

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-23/0862 of 28 November 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Deutsches Institut für Bautechnik

Tecfi Injection system XWE for rebar connection

Systems for post-installed rebar connections with mortar

Tecfi S.p.A Strada Statale Appia, Km. 193 81050 PASTORANO (CE) ITALIEN

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Tecfi Plant 4

24 pages including 3 annexes which form an integral part of this assessment

330087-01-0601, Edition 06/2021

European Technical Assessment ETA-23/0862 English translation prepared by DIBt

Page 2 of 24 | 28 November 2023

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 24 | 28 November 2023

Specific Part

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "Tecfi Injection system XWE for rebar connection" in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter ϕ from 8 to 40 mm or the tension anchor ZA of sizes M12 to M24 according to Annex A and injection mortar XWE are used for rebar connections. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between rebar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the rebar connection is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connections of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C 1
Characteristic resistance under seismic loading	See Annex B 4 and C 2

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 3 to C 4

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330087-01-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-23/0862 English translation prepared by DIBt

Page 4 of 24 | 28 November 2023

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 28 November 2023 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

Installation post installed rebar

Figure A1: Overlapping joint for rebar connections of slabs and beams

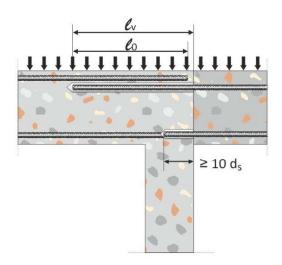
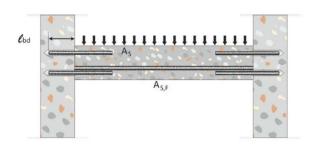
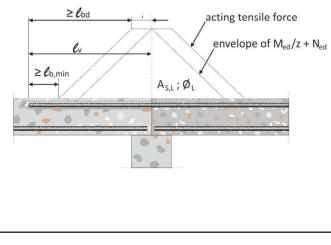
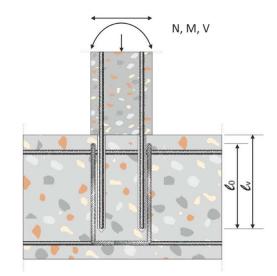
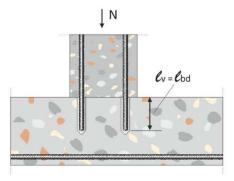




Figure A3: End anchoring of slabs or beams (e.g. designed as simply supported)


Figure A5: Anchoring of reinforcement to cover the line of acting tensile force


Tecfi Injection system XWE for rebar connection

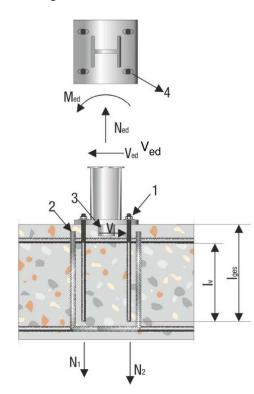
Product description Installed condition and examples of use for rebars

Figure A2: Overlapping joint at a foundation of a wall or column where the rebars are stressed in tension

Figure A4: Rebar connection for components stressed primarily in compression. The rebars are stressed in compression

Note to Figure A1 to A5:

In the Figures no transverse reinforcement is plotted, the transverse reinforcement shall comply with EN 1992-1-1:2004+AC:2010.


Preparing of joints according to Annex B 2

Annex A 1

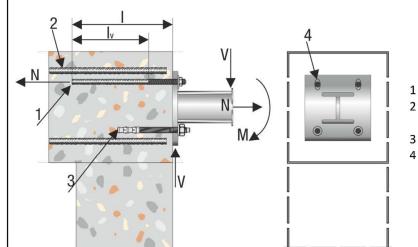

Installation tension anchor ZA

Figure A6: Anchorage of column to foundation with tension anchor ZA.

- 1 Tension anchor ZA (tension only)
- 2 Existing stirrup / reinforcement for overlap (lap splice)
- 3 Shear lug (or fastener loaded in shear)
- 4 Slotted hole with axial direction to the shear force

Figure A7: Anchorage of guardrail posts or cantilevered building components with tension anchor ZA and fastner.

- 1 Tension anchor ZA (tension only)
- Existing stirrup / reinforcement for overlap (lap splice)
- Fastener (or shear lug loaded in shear)
- Slotted hole with axial direction to the shear force

Note to Figure A6 and A7: In the Figures no transverse reinforcement is plotted, the transverse reinforcement shall comply with EN 1992-1-1:2004+AC:2010. The tension anchor may be only used for axial tensile force. The tensile force must be transferred by lab to the existing reinforcement of the building. The transfer of the shear force has to be ensured by suitable measures, e.g. by means of shear lugs or anchors with European Technical Assessment (ETA). Generals construction rules see Annex B 3

Tecfi Injection system XWE for rebar connection Product description Installed condition and examples of use for tension anchors

Annex A 2

Page 7 of European Technical Assessment ETA-23/0862 of 28 November 2023

Cartridge system	
Side-by-Side Cartridge: 440 ml, 585 ml and 1400 ml	
Static mixer DI03	
Static mixer blos	
Piston plug ACE and mixer extension ACF)
Tecfi Injection system XWE for rebar connection	
Product description Injection system	Annex A 3

Page 8 of European Technical Assessment ETA-23/0862 of 28 November 2023

English translation prepared by DIBt

	ŢØ
Minimum value of related rip area f _{R,min} accor	ding to EN 1992-1-1:2004+AC:2010
Rib height of the bar shall be in the range 0,05 (φ: Nominal diameter of the bar; h _{rib} : Rib heigl	
Table A1: Materials Rebar	
esignation	Material
ebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCI of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Tecfi Injection system XWE for rebar connection

Product description Specifications Rebar Annex A 4

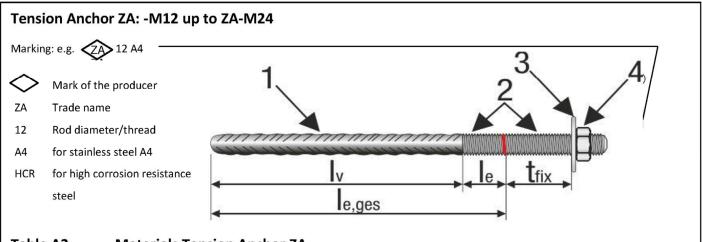


Table A2: Materials Tension Anchor ZA

							Mat	erial					
Part	Designation		ZA	vz		ZA A4				ZA HCR			
	and Drawale Constant of Drawa	M12	M16	M20	M24	M12	M16	M20	M24	M12	M16	M20	M24
	Class B according to NDP or NCI of EN 1992-1-1/NA												
1	Reinforcement bar	$f_{uk} = f_{tk}$	$f_{uk} = f_{tk} = k \cdot f_{yk}$										
	f _{yk} [N/mm²]		50	00		500				500			
	Threaded	Steel, zinc plated according to				Stainless steel, 1.4362,				High corrosion resistant steel,			
2	rod	EN ISO	683-4:2	018 or		1.4401, 1.4404, 1.4571,				1.4529, 1.4565,			
		EN 102	63:2001			EN 10088-1:2014				EN 10088-1:2014			
3	Washer	Steel, z	inc plate	ed accor	ding to	Stainle	s steel,	1.4362,		High corrosion resistant steel,			
-		EN ISO	EN ISO 683-4:2018 or 1.4401, 1.4404,				, 1.4571	,	1.4529	, 1.4565	,		
4	Nut	EN 102	63:2001			EN 100	88-1:20	14		EN 100	88-1:20	14	

Table A3: Dimensions and installation parameters – Tension anchor ZA

Size			_	ZA-M12	ZA-M16	ZA-M20	ZA-M24		
Diameter of thread	ds	[mm]	12	16	20	24			
Diameter of reinfo	φ	[mm]	12	16	20	25			
Drill hole diameter	r.	d _o	[mm]	16	20	25	32		
Diameter of cleara fixture	r of clearance hole in d _f [mm] 14 18 22				26				
With across nut fla	ts	SW	[mm]	19	24	30	36		
Stress area		A _s	[mm ²]	84	157	245	353		
Effective embedme	ent depth	l _v	[mm]	according to static calculation					
Length of bonded	Zinc plated	i	[]	≥ 20	≥ 20	≥ 20	≥ 20		
thread	A4/HCR	l'e	[mm]	≥ 100	≥ 100	≥ 100	≥ 100		
Minimum thicknes	s of fixture	min t _{fix}	[mm]	5	5	5	5		
Maximum thicknes	ss of fixture	max t _{fix}	[mm]	3000	3000	3000	3000		
Maximum installat	ion torque	max T _{inst}	[Nm]	50	100	150	150		

Tecfi Injection system XWE for rebar connection

Product description

Specifications Tension Anchor ZA

Annex A 5

Speci	fication of the intended	use		
Anchor	ages subject to:		Working life 50 years	Working life 100 years
	Hammer drilling Hammer drilling with	static and quasi-static loads	Ø8 to Ø40 ZA-M12 to ZA-M24	Ø8 to Ø40 ZA-M12 to ZA-M24
ł	hollow drill bit	seismic action	Ø10 to Ø40	Ø10 to Ø40
	Compressed air drilling Diamond drilling	fire exposure	Ø8 to Ø40 ZA-M12 to ZA-M24	Ø8 to Ø40 ZA-M12 to ZA-M24
Temper	rature Range:	(max long-term te	- 40°C to +80°C emperature +50 °C and max short-te	erm temperature +80 °C)

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013 + A1:2016.
- Strength classes C12/15 to C50/60 according to EN 206:2013 + A1:2016.
- Maximum chloride content of 0,40% (CL 0.40) related to the cement content according to EN 206:2013 + A1:2016.
- Non-carbonated concrete.

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of φ + 60 mm prior to the installation of the new rebar.

The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2004+AC:2010. The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Use conditions (Environmental conditions) with tension anchor ZA:

- Structures subject to dry internal conditions (all materials).
 - For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

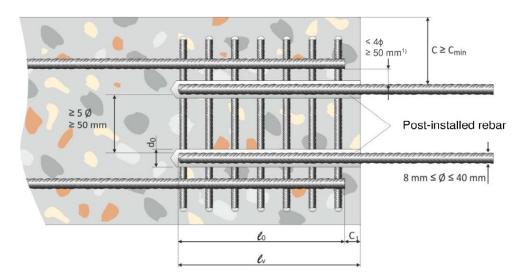
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design according to EN 1992-1-1:2004+AC:2010, EN 1992-1-2:2004+AC:2008 and Annex B 2 and B 3.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Installation:

- Dry or wet concrete. It must not be installed in flooded holes.
- Overhead installation allowed.
- Hole drilling by hammer drill (HD), hollow drill (HDB), diamond drill (DD) or compressed air drill mode (CD).
- The installation of post-installed rebar resp. tension anchors shall be done only by suitable trained installer and under supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).

Tecfi Injection system XWE for rebar connection

Intended use Specifications


Page 11 of European Technical Assessment ETA-23/0862 of 28 November 2023

English translation prepared by DIBt

Figure B1: General construction rules for post-installed rebars

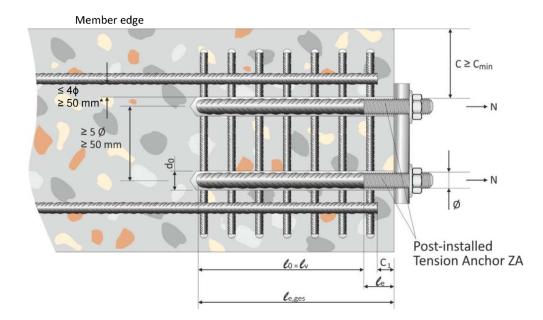
- Only tension forces in the axis of the rebar may be transmitted.
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2004+AC:2010.
- The joints for concreting must be roughened to at least such an extent that aggregate protrude.

*) If the clear distance between lapped bars exceeds 4Ø but at least 50 mm, then the lap length shall be increased by the difference between the clear bar distance and 4Ø but at least 50 mm.

The following applies to Figure B1:

- c concrete cover of post-installed rebar
- ${\bf c}_1 \qquad \qquad {\rm concrete\ cover\ at\ end-face\ of\ existing\ rebar}$
- c_{min} minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2
- φ diameter of post-installed rebar
- l₀ lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3
- l_v effective embedment depth, $\ge l_0 + c_1$
- d₀ nominal drill bit diameter, see Annex B 5

Tecfi Injection system XWE for rebar connection


Intended use

General construction rules for post-installed rebars

Figure B2: General construction rules for tension anchors ZA

- The length of the bonded-in thread may be not be accounted as anchorage.
- Only tension forces in the direction of the bar axis may be transmitted by the tension anchor ZA.
- The tension force must be transferred via an overlap joint to the reinforcement in the building part.
- The transfer of shear forces shall be ensured by appropriate additional measures, e.g shear lugs or by anchors with an European technical assessment.
- In the anchor plate, the holes for the tension anchors shall be executed as elongated holes with axis in the direction of the shear force.

*) If the clear distance between lapped bars exceeds 4Ø but at least 50 mm, then the lap length shall be increased by the difference between the clear bar distance and 4Ø but at least 50 mm.

The following applies to Figure B2:

- c concrete cover of tension anchor ZA
- concrete cover at end-face of existing rebar
- c_{min} minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2
- φ diameter of tension anchor
- l₀ lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3
- l_v effective embedment depth
- I_e length of bonded thread
- $I_{e,ges}$ overall embedment depth, $\ge I_0 + c_2$
- d₀ nominal drill bit diameter, see Annex B 5

Tecfi Injection system XWE for rebar connection

Intended use

General construction rules for tension anchors ZA

	drilling	method			
	Drilling method	Rebar diameter	Without drilling aid	With dri	lling aid
HD:	Hammer drilling	< 25 mm	30 mm+0,06 · l _v ≥ 2 Ø	30 mm + 0,02 · l _v ≥ 2 Ø	
	Hammer drilling with hollow drill bit	≥ 25 mm	40 mm+0,06 · l _v ≥ 2 Ø	40 mm + 0,02 · l _v ≥ 2 Ø	Drilling aid
DD .	Diamand drilling	< 25 mm	Drill rig used as drilling	30 mm + 0,02 · l _v ≥ 2 Ø	A A A A A A A A A A A A A A A A A A A
DD:	Diamond drilling	≥ 25 mm	aid	40 mm + 0,02 · l _v ≥ 2 Ø	
CD:	Compressed air	< 25 mm	50 mm+0,08 · l _v	50 mm + 0,02 · l _v	
	drilling	≥ 25 mm	60 mm+0,08 · l _v ≥ 2 Ø	60 mm + 0,02 · l _v ≥ 2 Ø	

Comments: The minimum concrete cover acc. EN 1992-1-1:2004+AC:2010 must be observed. For the minimum concrete cover $c_{min,seis}$ in case of a seismic action, see Table B2.

Table B2: Minimum concrete cover min c_{min,seis}

Drilling method	Design conditions	Distance to 1st edge	Distance to 2nd edge
HD: Hammer drilling HDB: Hammer drilling with	Edge	≥ 2 Ø	≥ 2 Ø
hollow drill bit CD: Compressed air drilling	Corner	≥ 2 Ø	≥ 2 Ø
DD: Diamond drilling	Edge	≥ 4 Ø	≥ 8 Ø
DD: Diamond drilling	Corner	≥ 6 Ø	≥ 6 Ø

Table B3:Dispensing tools

Cartridge type/size	Hand tool	Pneumatic tool
Side-by-side cartridges 440, 585 ml	e.g. DH04	e.g. DH05
Side-by-side cartridges 1400 ml	-	e.g. DH05

All cartridges could also be extruded by a battery tool.

Tecfi Injection system XWE for rebar connection

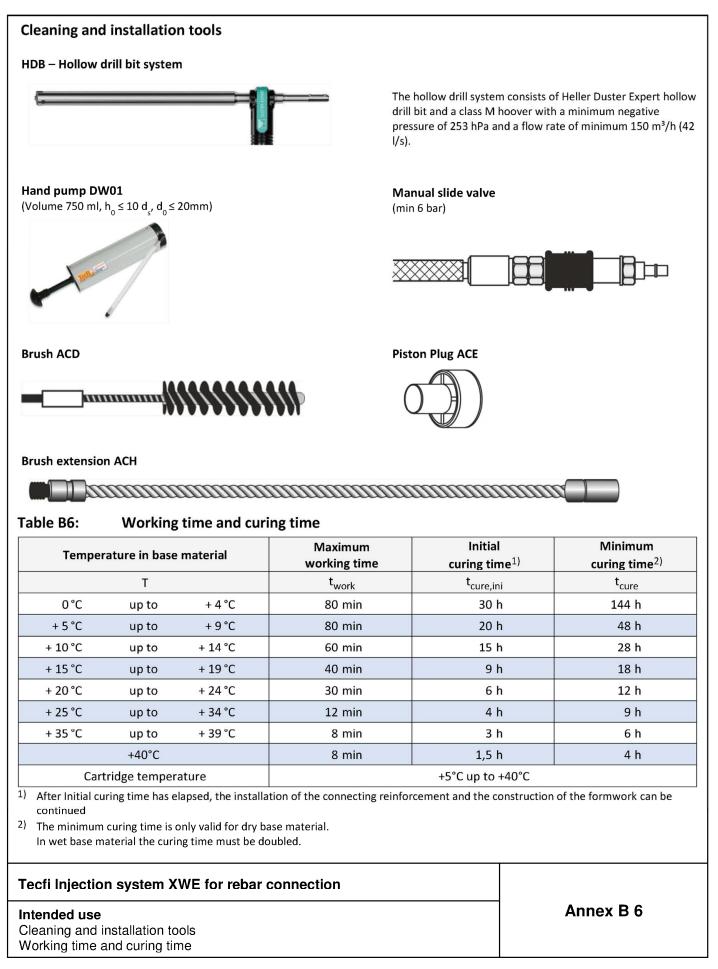
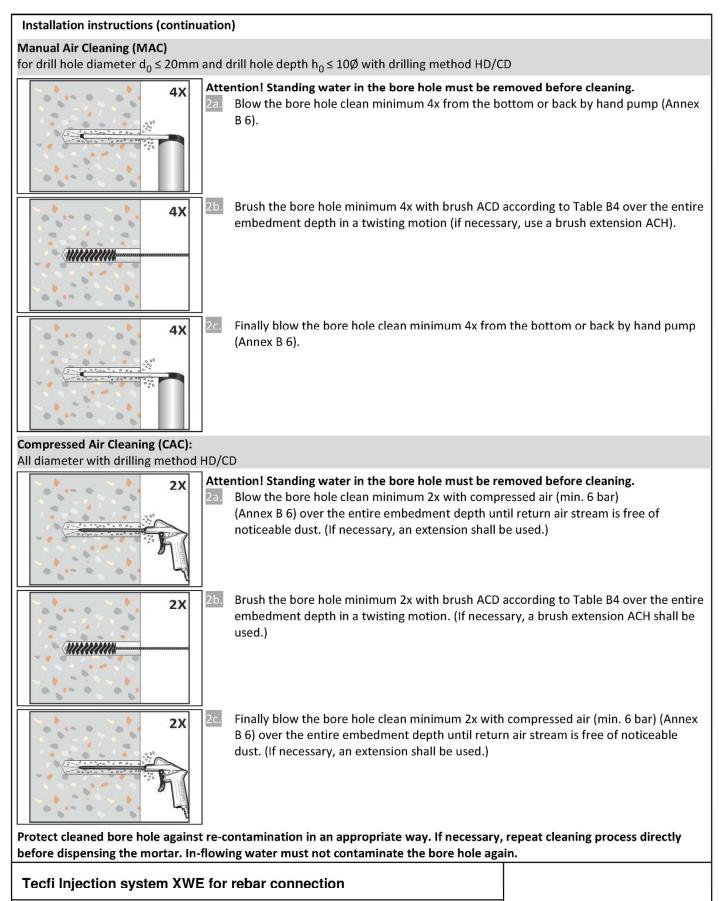
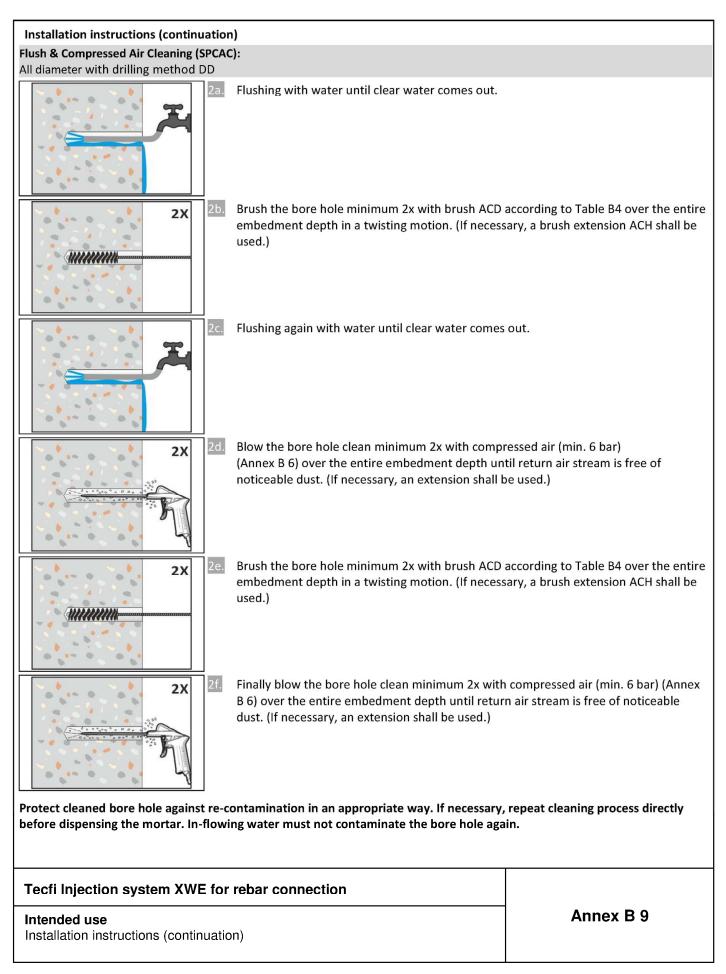

Intended use Minimum concrete cover Dispensing tools

Table	e B4:					-		CD) drill		Jui an	u iiixei	exte	nsion,	hammer (H	1 <i>D</i>], uit	imonu
Bar	Tension	-	Drill								Cartridg	e: 440	ml or 5	85 ml	Cartri	idge: 1400 ml
size	anchor	l	bit - Q	5		d _b	ĸ	d _{b,min} min.	Piston plug		Hand or ttery too	bl	Pneu	umatic tool	Pne	umatic tool
Ø	Ø	HD	DD	CD	Br	ush Ø)	Brush Ø	piug	I _{v,max}	Mix exten:		I _{v,max}	Mixer extension	I _{v,max}	Mixer extension
[mm]	[mm]		[mm]			[m	m]	[mm]		[mm]			[mm]		[mm]	
8	-	1	.0		ACD1	0 13	1,5	10,5	-	250			250		250	
0	-	а. -	.0	_	ACD1	2 1:	3,5	12,5		700			800		800	ACF10/0,75
10	-	1	.2		ACDI	2 1.	5,5	12,5	_	250			250		250	or
10	-		.2	_	ACD1	1 1	5,5	14,5	ACE14	700			1000		1000	ACF16/1,8
12	ZA-M12	1	.4				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	14,5	ACLI4	250			250		250	
12			16		ACD1	6 17	7,5	16,5	ACE16						1200	
14	÷.		18		ACD1	8 20	0,0	18,5	ACE18	700	ACF10	/0,75	1300		1400	
16	ZA-M16		20		ACD2	0 22	2,0	20,5	ACE20		or			A CE 10 /0 75	1600	
20	ZA-M20	2	5	-	ACD2	5 27	7,0	25,5	ACE25		ACF16	6/1,8		ACF10/0,75	'	
20			<u>-</u> 27	26	ACD2	6 28	3,0	26,5	ACE25					or ACF16/1,8		
22	-		28		ACD2	8 30	0,0	28,5	ACE28							
24/25	ZA-M24		30		ACD3	0 32	2,0	30,5	ACE30	500						ACF16/1,8
24/25	2A-1V124		32		ACD3	2 34	1,0	32,5	ACE32				1000		2000	
28	-		35		ACD3	5 37	7,0	35,5	ACE35				1000		2000	
32/34			40		ACD4	0 43	3,5	40,5	ACE40							
36	Ξ.		45		ACD4	5 47	7,0	45,5	ACE45							
40	-	-	52	52	ACD5	2 54	1,0	52,5	ACE52	-	-					
	Ξ	55	12	55	ACD5		3,0	55,5	ACE55							
Table	B5:				•	-			age dep	oth and	d mixer	exte	nsion,	hammer d	rilling v	vith
_	T	hc	bllow	drill	bit sys			DB)								4 4 4 4 4
Bar	Tension anchor	Dr	ill	d	ь	d _{b,m}		Piston	Cartridge: 440 ml or 5			r 585 m	585 ml Cartridge: 1400 ml			
size Ø	Ø	bit -	ø	Brush	n-Ø	min Brush		plug	Hand or battery tool Pne			neumat	ic tool	Pneumatic tool		
		HD	в						I _{v,max}		lixer ension	lv,m	ax 6	Mixer	I _{v,max}	Mixer extension
[mm]	[mm]	[mi	m]						[mm]			[mn	n]		[mm]	
	-	1	5				Ī	-	250			250	5		250	
8	-								700			800	D		800	
	-	12	2					-	250	1		250			250	
10	-						ľ		700	1		100			1000	
		14	4					ACE14	250	1		250			250	
12	ZA-M12	16	5				ŀ	ACE16		1						
14	-	18			o clea		ŀ	ACE18	700	ACF1	.0/0,75		AC	CF10/0,75		ACF10/0,75
16	ZA-M16	20			Requir	ed	ŀ	ACE20			or			or		or
20	ZA-M20	25					ŀ	ACE25			16/1,8		A	CF16/1,8		ACF16/1,8
22		28					ŀ	ACE28				100	0		1000	
		30					ŀ	ACE30				_00	-			
24/25	ZA-M24	32					ŀ	ACE32	500							
28		35					ŀ	ACE35								
32/34		4(ŀ	ACE40								
	i Injectio	14472		xw	E for	reba	r co		n			1				L
	ided use meter bru	shes	, pisto	on plu	ugs, m	iax ai	nche	orage de	pth and	mixer	extensi	ion		Anı	nex B	5

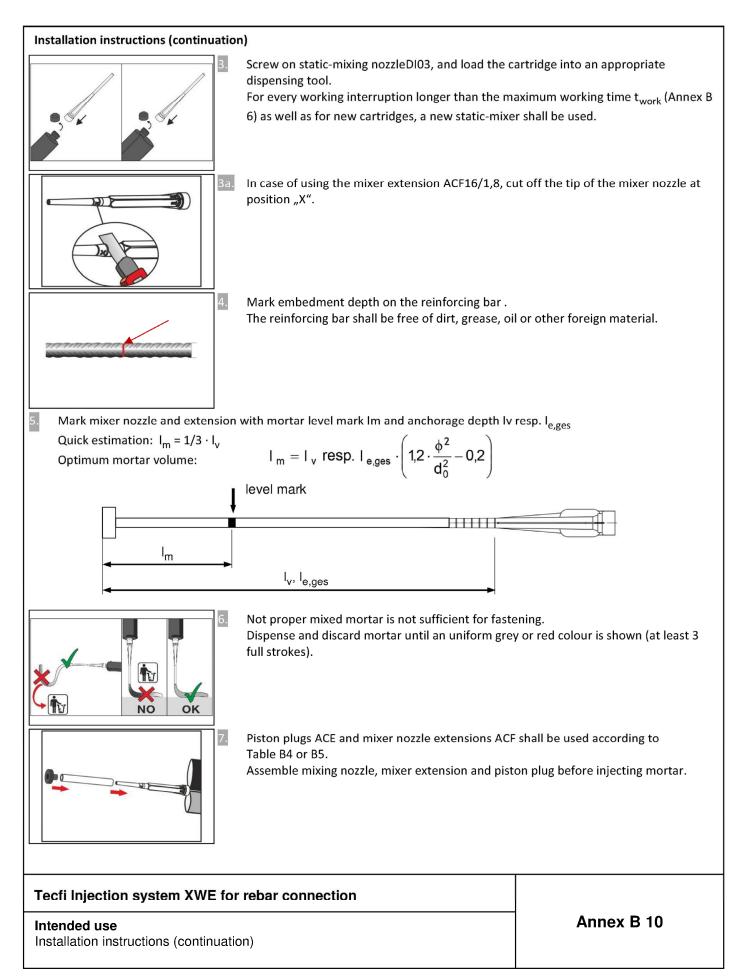
Page 15 of European Technical Assessment ETA-23/0862 of 28 November 2023



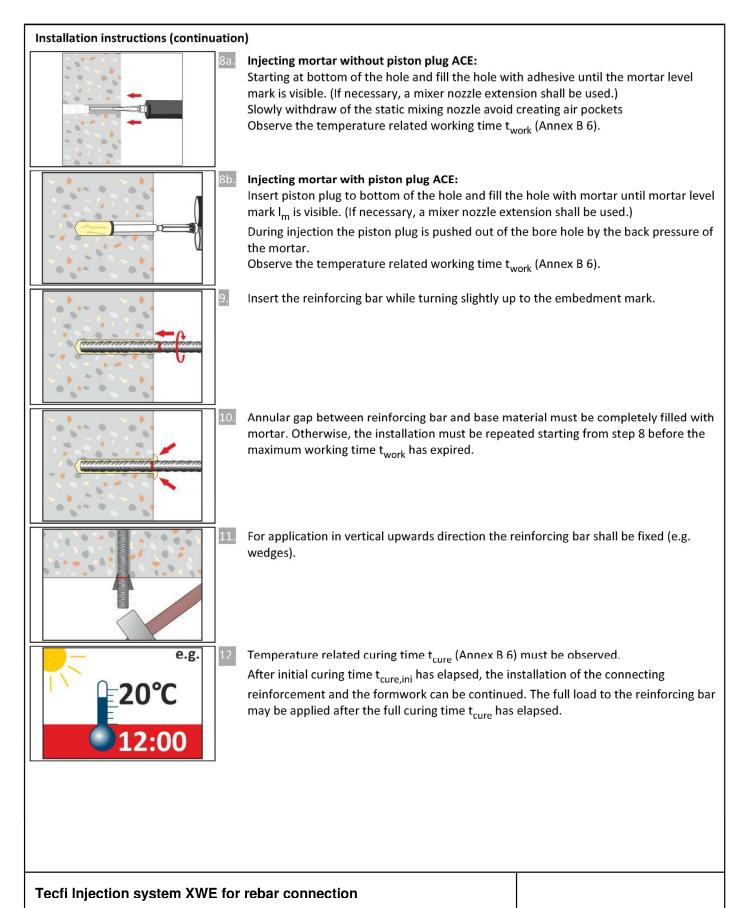
Installation instructions Attention: Before drilling, remove carbonated concrete and clean contact areas (see Annex B1) In case of aborted drill hole: the drill hole shall be filled with mortar. Drilling of the bore hole Hammer drilling (HD) / Compressed air drilling (CD) Drill a hole to the required embedment depth. Drill bit diameter according to Table B4. Proceed with Step 2 (MAC or CAC). 1b. Hollow drill bit system (HDB) (see Annex B 6) Drill a hole to the required embedment depth. Drill bit diameter according to B5. The hollow drilling system removes the dust and cleans the bore hole. Proceed with Step 3. 1c. Diamond drilling (DD) Drill a hole to the required embedment depth required Drill bit diameter according to Table B4. Proceed with Step 2 (SPCAC). Tecfi Injection system XWE for rebar connection Annex B 7 Intended use Installation instruction



Intended use


Z106852.23

Installation instructions (continuation)



Intended use

Installation instructions (continuation)

ension Anchor				M12	2	M16	M20)	M24	
teel, zinc plated (ZA vz)					I		-1			
Characteristic tension resist	ance	N _{Rk,s}	[kN]	67		125	196		282	
Partial factor		Y _{Ms,N}	[-]		I	:	1,4			
Stainless Steel (ZA A4 or ZA	HCR)									
Characteristic tension resistance N _{Rk,s} [kN] 67 125 171									247	
Partial factor		Y _{Ms,N}	[-]		1,4		1,3		1,4	
	ength I _{b,min} a _{D,min} acc. to able C2. fication fa	and the mir Eq. 8.11) sł ctor α _{lb} =	nimum lap l nall be mult	ength l _{0,mir} iply by the	according amplification	to EN 1992 on factor				
life 50	and 100 y	ears					Δr	nplification	factor	
Concrete class		Drilling	method		Bar	size		$\alpha_{lb} = \alpha_{lb,1}$		
		CHIRD BU MALINER			8 mm to	40 mm			007	
C12/15 to C50/60		all drilling	g methods		ZA-M12 to			1,0		
metho workin f _{bd,PIR} = f _{bd,PIR,10} with	values of ds and for ag life 50 a $k_b \cdot f_{bd}$ $p_{0y} = k_{b,100y}$ ign value of	r good co Ind 100 y ^{. f_{bd}}	nditions; ears							
diamete	r, the drillin and recom	g method f nended pa	or good bo	nd conditio γ _c = 1,5 acc	n (for all ot ording to E	her bond c	onditions n	nultiply the		
Rebar	1			Co	oncrete cla	ss				
Ø	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/6	
8 to 32 mm	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3	
ZA-M12 to ZA-M24										
34 mm 36 mm	1,6 1,5	2,0 1,9	2,3 2,2	2,6 2,6	2,9 2,9	3,3 3,3	3,6 3,6	3,9 3,8	4,2	
40 mm	1,5	1,9	2,2	2,5	2,5	3,3	3,0	3,8	4,0	
	XWE for	rebar cor	nection							

Minimum anchorage length and minimum lap length under seismic action

The minimum anchorage length $I_{b,min}$ and the minimum lap length $I_{0,min}$ according to EN 1992-1-1:2004+AC:2010 ($I_{b,min}$ acc. to Eq. 8.6 and Eq. 8.7 and $I_{0,min}$ acc. to Eq. 8.11) shall be multiply by the amplification factor $\alpha_{lb,seis,100y}$ according to Table C5.

Table C5:Amplification factor $\alpha_{lb,seis} = \alpha_{lb,seis,100y}$ related to concrete class and drilling method;
working life 50 and 100 years

Concrete class	Drilling method	Bar size	Amplification factor $\alpha_{lb,seis} = \alpha_{lb,seis,100y}$
C16/20 to C50/60	all drilling methods	10 mm to 40 mm	1,0

Table C6:Reduction factor k_{b,seis} = k_{b,seis,100y} for all drilling methods;
working life 50 and 100 years

Rebar		Concrete classes							
Ø	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
10 to 40 mm	No performance assessed				1,	,0			

Table C7:Design values of the ultimate bond stress $f_{bd,PIR,seis}$ and $f_{bd,PIR,seis,100y}$ in N/mm² for all
drilling methods and for good conditions;working life 50 and 100 works

working life 50 and 100 years

 $f_{bd,PIR,seis} = k_{b,seis \cdot fbd}$ $f_{bd,PIR,seis,100y} = k_{b,seis,100y \cdot fbd}$

with

 f_{bd} : Design value oft he ultimate bond stress in N/mm² considering the concrete classes, the rebar diameter, the drilling method for godd bond condition (for all other bond conditions multiply the value by η_1 =0.7) and recommended partial factor γ_c = 1,5 according to EN 1992-1-1:2004+AC:2010.

 $k_{b,seis}$, $k_{b,seis,100y}$: Reduction factor according to Table C6

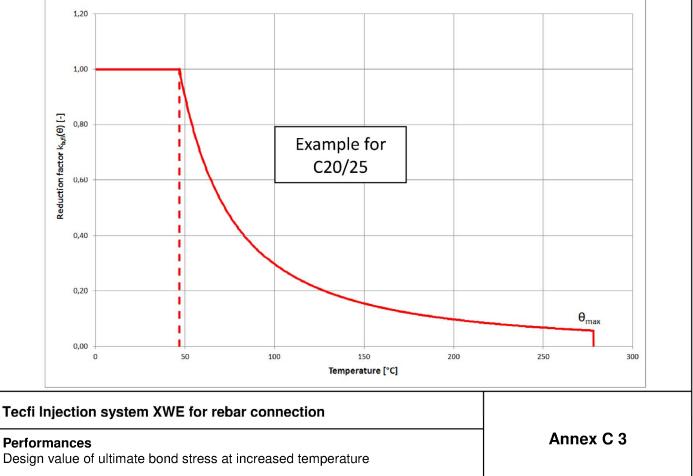
Rebar	Concrete classes								
Ø	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
10 to 32 mm		2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3
34 mm	No performance	2,0	2,3	2,6	2,9	3,3	3,6	3,9	4,2
36 mm	assessed	1,9	2,2	2,6	2,9	3,3	3,6	3,8	4,1
40 mm		1,8	2,1	2,5	2,8	3,1	3,4	3,7	4,0

Tecfi Injection system XWE for rebar connection

Performances

Minimum anchorage length and minimum lap length, Amplification factor, Reduction factor and Design values of ultimate bond stress under seismic action

Annex C 2



Design value of the ultimate bond stress f_{bd,fi}, f_{bd,fi,100y} at increased temperature for concrete classes C12/15 to C50/60, (all drilling methods); working life 50 and 100 years:

The design value of the bond stress $f_{bd,fi}$ at increased temperature has to be calculated by the following equation: For working life E0 works $f_{bd,fi} = k_{bd} (0) \cdot f_{bd}$

For wo	orking life 50 y	rears: $f_{bd,fi} = k_{fi}(\theta) \cdot f_{bd,PIR} \cdot \gamma_c / \gamma_{M,fi}$
with:	θ ≤ 278°C:	$k_{fi}(\theta) = 4673.8 \cdot \theta^{-1.598} / (f_{bd, PIR} \cdot 4.3) \le 1.0$
	θ > 278°C:	$k_{fi}(\theta) = 0$
For wo	orking life 100	
with:	θ ≤ 278°C:	$k_{fi,100y}(\theta) = 4673.8 \cdot \theta^{-1.598} / (f_{bd,PIR,100y} \cdot 4.3) \le 1.0$
	θ > 278°C:	$k_{fi,100y}(\theta) = 0$
f _{bd,fi, fb}	od,fi,100y	Design value of the ultimate bond stress at increased temperature in N/mm ²
θ		Temperature in °C in the mortar layer.
k _{fi} (θ), k	< _{fi,100y} (θ)	Reduction factor at increased temperature.
f _{bd,PIR} ,	f _{bd,PIR,100y}	Design value of the bond stress $f_{bd,PIR} = f_{bd,PIR,100y}$ in N/mm ² in cold condition according to
		Table C4 considering the concrete classes, the rebar diameter, the drilling method and the bond conditions according to EN 1992-1-1:2004+AC:2010.
γ _c		= 1,5, recommended partial factor according to EN 1992-1-1:2004+AC:2010
γ _{M,fi}		= 1,0, recommended partial factor according to EN 1992-1-2:2004+AC:2008
For evi	dence at incr	eased temperature the anchorage length shall be calculated according to
EN 199	92-1-1:2004+4	AC:2010 Equation 8.3 using the temperature-dependent design value of ultimate bond stress ${ m f}_{ m bd,fi}$

Example graph of Reduction factor $k_{fi}(\theta)$, $k_{fi,100y}(\theta)$ for concrete classes C20/25 for good bond conditions:

Tension Anchor Steel, zinc plated (Z	Δ ν7)			M12	M16	M20	M24
Characteristic tension resistance	R30	- N _{Rk,s,fi}		2,3	4,0	6,3	9,0
	R60		[kN]	1,7	3,0	4,7	6,8
	R90			1,5	2,6	4,1	5,9
	R120			1,1	2,0	3,1	4,5
Stainless Steel (ZA A	4 or ZA H	CR)	,				
	R30		_	3,4	6,0	9,4	13,6
Characteristic	R60	N _{Rk,s,fi}	[kN] -	2,8	5,0	7,9	11,3
tension resistance	R90	Rk,s,fi	נגואן	2,3	4,0	6,3	9,0
	R120			1,8	3,2	5,0	7,2