

ul. Filtrowa 1

tel.: (+48 22) 825-04-71 (+48 22) 825-76-55 fax: (+48 22) 825-52-86

www.itb.pl

European Technical Assessment

ETA-10/0102 of 13/09/2019

General Part

Technical Assessment Body issuing the European Technical Assessment

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Instytut Techniki Budowlanej

DGE 02 Sinto-ST-VE, DGE 12 Sinto-ST-VEW and DGE 22 Sinto-ST-VES

Bonded fasteners for use in concrete

TECFI S.p.A. S.S. Appia KM 193 81050 Pastorano (CE)

Italy

TECFI Manufacturing Plant A2

29 pages including 3 Annexes which form an integral part of this assessment

European Assessment Document **EAD** 330499-01-0601 "Bonded fasteners for use in concrete"

ETA-10/0102 issued on 15/05/2014

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

Specific Part

1 Technical description of the product

The DGE 02 Sinto-ST-VE, DGE 12 Sinto-ST-VEW and DGE 22 Sinto-ST-VES are bonded fasteners (injection type) consisting of an injection mortar cartridge using an applicator gun equipped with a special mixing nozzle and steel element: commercial threaded rod of the sizes M8 to M30 with hexagon nut and washer or reinforcing bar (rebar) from Ø8 to Ø32 mm.

The steel element is placed into a drilled hole previously injected (using an applicator gun) with a mortar with a slow and slight twisting motion. The steel element is anchored by the bond between steel element, mortar and concrete.

An illustration and the description of the products are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document (EAD)

The performances given in clause 3 are only valid if the anchors are used in compliance with the specifications and conditions given in Annex B.

The performances given in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Performance of the product

3.1.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load and shear load (static and quasi static loading), displacements	See Annex C1 to C7
Characteristic resistance for seismic performance category C1	See Annex C8
Characteristic resistance for seismic performance category C2	See Annex C9

3.1.2 Hygiene, health and the environment (BWR 3)

No performance assessed.

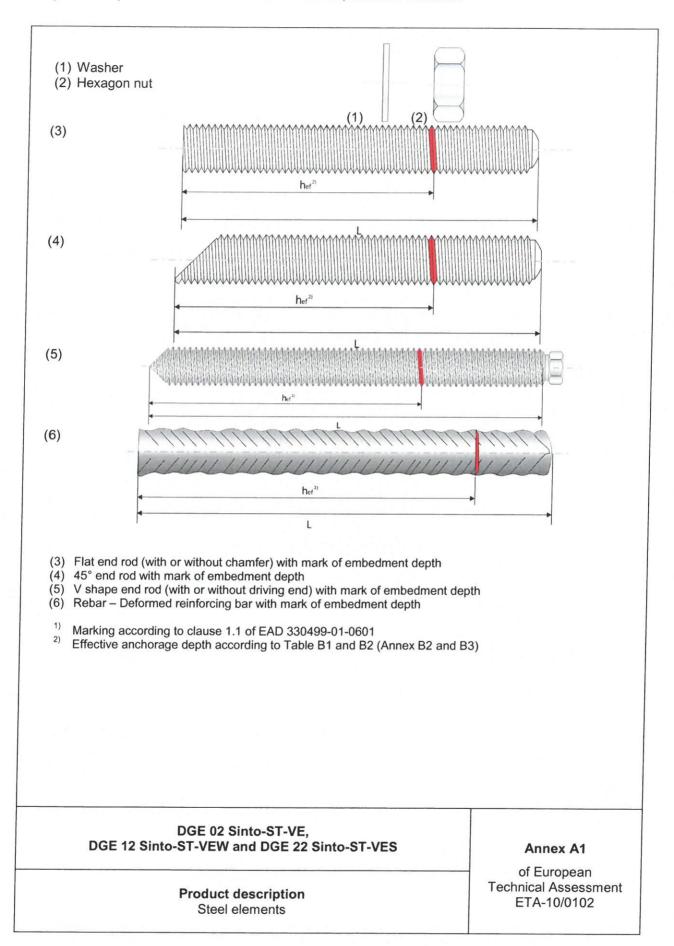
3.2 Methods used for the assessment

The assessment of the products has been made in accordance with the EAD 330499-01-0601 "Bonded fasteners for use in concrete".

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision 96/582/EC of the European Commission the system 1 of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) applies.

Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document (EAD)


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Instytut Techniki Budowlanej.

For type testing the results of the tests performed as part of the assessment for the European Technical Assessment shall be used unless there are changes in the production line or plant. In such cases the necessary type testing has to be agreed between Instytut Techniki Budowlanej and the notified body.

Issued in Warsaw on 13/09/2019 by Instytut Techniki Budowlanej

lucayma

Krzysztof Kuczyński, PhD Deputy Director of ITB

Table A1: Threaded rods

Designa	ition		Mat	erial								
Steel, zinc plated:												
electroplated ≥ 5 µm ac	c. to EN ISO 4042											
hot-dip galvanized ≥ 40	µm acc. to EN IS	0 1461										
Threaded rod	Property class	Characteristic steel ultimate strength	Characteristic steel yield strength	Fracture elongation								
	4.8	f _{uk} ≥ 400 N/mm ²	f _{yk} ≥ 320 N/mm ²	$A_5 > 8\%^{1)}$	EN ISO 898-							
	5.8	f _{uk} ≥ 500 N/mm ²	f _{yk} ≥ 400 N/mm ²	$A_5 > 8\%^{1)}$	1 211100 030-							
	8.8	f _{uk} ≥ 800 N/mm ²	f _{yk} ≥ 640 N/mm ²	$A_5 \ge 12\%^{1)}$								
	10.9	f _{uk} ≥ 1000 N/mm ²	f _{yk} ≥ 900 N/mm ²	$A_5 > 9\%^{1)}$								
Hexagon nut	4		for class 4.8 rods									
	5		for class 5.8 rods		EN 898-2							
	8		for class 8.8 rods	V	EN 898-2							
	10	1	for class 10.9 rods									
Washer	Ste	eel, according to EN	ISO 7089; correspor	nding to anchor ro	d material							
Stainless steel A2		(Materials)	1.4301, 1.4307, 1.4	567, 1.4541								
Stainless steel A4		(Materials)	1.4401, 1.4404, 1.4	571, 1.4362,1.45	78							
High corrosion resistant	e stainless steel	(HCR) (Materials)	1.4529, 1.4565									
Threaded rod	Property class	Characteristic steel ultimate strength	Characteristic steel yield strength	Fracture elongation	EN 10088							
	50	f _{uk} ≥ 500 N/mm ²	f _{yk} ≥ 210 N/mm ²	$A_5 > 8\%^{1)}$	EN ISO 3506							
	70	f _{uk} ≥ 700 N/mm ²	f _{yk} ≥ 450 N/mm ²	$A_5 \ge 12\%^{1)}$								
	80	f _{uk} ≥ 800 N/mm ²	f _{yk} ≥ 600 N/mm ²	$A_5 \ge 12\%^{1)}$								
lexagon nut	50		for class 50 rods									
	70		for class 70 rods		EN 10088 EN ISO 3506							
	80	1	1 100 3500									
Vasher	0	Steel, according to EN 10088; corresponding to anchor rod material										

 $^{^{1)}\}mbox{For seismic performance category C1 and C2, $A_5 > 19\%$}$

Commercial standard threaded rods may be used, with:

- material and mechanical properties according to Table A3,
- confirmation of material and mechanical properties by inspection certificate 3.1 according to EN-10204:2004,
- marking of the threaded rod with the embedment depth.

Note: Commercial standard threaded rods made of galvanized steel with property class above 8.8 are not permitted in some Member States.

DGE 02 Sinto-ST-VE,
DGE 12 Sinto-ST-VEW and DGE 22 Sinto-ST-VES

Annex A2

Product description Materials (1)

Table A2: Reinforcing bars (Rebar)

Designation	Material	
	Bars and de-coiled rods Class B or C	
Rebar according to	With f _{yk} and k according to EN 1992-1-1:2004+AC:2010	
EN 1992-1-1:2004+AC:2010	$f_{uk} = f_{tk} = k \times f_{yk}$	
	Rib height of the bar (h) in the range 0,05d ≤ h ≤ 0,07d	

Table A3: Injection mortars

Product	Composition
DGE 02 Sinto-ST-VE DGE 12 Sinto-ST-VEW DGE 22 Sinto-ST-VES (two component injection mortars)	Additive: quartz Bonding agent: vinyl ester resin styrene free Hardener: dibenzoyl peroxide

DGE 02 Sinto-ST-VE, DGE 12 Sinto-ST-VEW and DGE 22 Sinto-ST-VES

> Product description Materials (2)

Annex A3

Coaxial cartridge - size from 75 ml to 420 ml

Side by side cartridge - size from 345 ml to 825 ml

CIC foil cartridge - size from 165 ml to 300 ml

Coaxial peeler catridge - size of 280 ml

On the labels there all relevant information information regarding item code, batch number, trade name, processing note for installation, gel time and curing time related to the concrete temperature, hazard pictograms, expiration date and storage conditions.

MIXER - the mixer is suitable for all type of cartridges

additional mixer extension, variable length between 300 mm up to 1000 mm

DGE 02 Sinto-ST-VE,
DGE 12 Sinto-ST-VEW and DGE 22 Sinto-ST-VES

Product description
Cartridge types and sizes

Annex A4

Specifications of intended use

lise.

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirement 1 (EU) 305/2011 shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

Anchors subject to:

Static and quasi-static loads: sizes from M8 to M30 and from Ø8 to Ø32.

Seismic performance category C1: sizes from M12 to M20, rods with f_{uk} ≤ 800 N/mm² and fracture elongation A₅ ≥ 19%.

Seismic performance category C2: sizes M12 and M16, rods with f_{uk} ≤ 800 N/mm² and fracture elongation A₅ ≥ 19%.

Base material:

- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum to C50/60 at maximum according to EN 206-1206-1:2013+A1:2016.
- Non-cracked concrete: sizes from M8 to M30 and from Ø8 to Ø32.
- Cracked concrete: sizes from M10 to M20.

Temperature range:

The anchors may be used in the following temperature range:

- -40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C).
- -40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C).
- -40°C to +120°C (max. short term temperature +120°C and max. long term temperature +72°C).

Use conditions (environmental conditions):

- X1: Structures subject to dry internal conditions: Elements made of galvanized steel (zinc plated or hot dip galvanized) and stainless steel A2, A4 or high corrosion resistance steel (HCR).
- X2: Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently
 damp internal condition, if no particular aggressive conditions exist: Elements made of stainless steel A4 or high corrosion
 resistance steel (HCR).
- X3: Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if other particular aggressive conditions exist. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used): Elements made of high corrosion resistant steel (HCR).

Installation:

- Dry or wet concrete (use category I1): sizes from M8 to M30 and from Ø8 to Ø32.
- Flooded holes with the exception of seawater (use category I2): sizes from M8 to M30 and from Ø8 to Ø32.
- Installation direction D3 (downward and horizontal and upwards installation): sizes from M8 to M30 and from Ø8 to Ø32.
- The anchors are suitable for hammer drilled holes (HD), for hollow drill bit (HDB) and for compressed air drill (CA): sizes from M8 to M30 and from Ø8 to Ø32.

Design methods:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the
 anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static loads are designed in accordance to EN 1992-4:2018 and Technical Report TR 055.
- Anchorages under seismic actions are designed in accordance to EN 1992-4:2018 and Technical Report TR 045.

DGE 02 Sinto-ST-VE,
DGE 12 Sinto-ST-VEW and DGE 22 Sinto-ST-VES

Intended use Specifications Annex B1

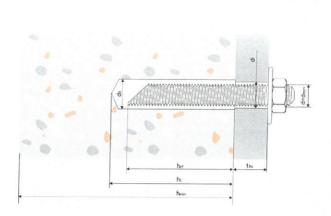


Table B1: Installation data for threaded rods

Size		M8	M10	M12	M16	M20	M24	M27	M30
Nominal drilling diameter	d ₀ [mm]	10	12	14	18	24	28	30	35
Maximum diameter hole in the fixture	d _{fix} [mm]	9	12	14	18	22	26	30	33
Effective embedment	h _{ef,min} [mm]	60	70	80	100	120	145	145	145
depth	h _{ef,max} [mm]	160	200	240	320	400	480	540	600
Depth of the drilling hole	h ₁ [mm]				h _{ef} + 5	5 mm			
Minimum thickness of the concrete slab	h _{min} [mm]	h _{ef}	+ 30 mm;	≥ 100 m	m	h _{ef} + 2d ₀			
Maximum setting torque moment	T _{fix} [N·m]	10	20	40	80	130	200	250	280
Thickness to be fixed	t _{fix,min} [mm]				> ()			
Thickness to be liked	t _{fix,max} [mm]				< 15	00			
Minimum spacing	s _{min} [mm]	40	50	60	75	100	115	120	140
Minimum edge distance	c _{min} [mm]	40	50	60	75	100	115	120	140

Intended use Installation data for threaded rods

Annex B2

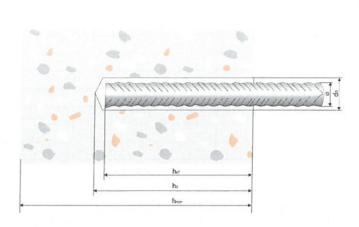


Table B2: Installation data for rebar

Size		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Nominal drilling diameter	d ₀ [mm]	10 ¹⁾ 12 ¹⁾	12 ¹⁾ 14 ¹⁾	14 ¹⁾ 16 ¹⁾	18	20	25	30	35	40
Effective	h _{ef,min} [mm]	60	70	80	80	100	120	150	180	200
embedment depth	h _{ef,max} [mm]	160	200	240	280	320	400	500	560	640
Depth of the drilling hole	h ₁ [mm]		h _{ef} + 5 mm							
Minimum thickness of the concrete slab	h _{min} [mm]	h _{ef} + 3 ≥ 100					h _{ef} + 2d ₀			
Minimum spacing	s _{min} [mm]	50	60	65	75	80	100	120	140	160
Minimum edge distance	c _{min} [mm]	50	60	65	75	80	100	120	140	160

¹⁾ Each of two given values can be used

Intended use
Installation data for rebar

Annex B3

Table B3: Maximum processing time and minimum curing time

DGE	02 Sinto-ST-VE (standard ve	rsion)		
Concrete temperature [C°]	Processing time [min.]	Minimum curing time ¹⁾ [min		
-10	105	1440		
-5	65	840		
0	45	420		
+5	25	90		
+10	16	60		
+15	11,5	45		
+20	7,5	40		
+25	5	35		
+30	3	30		
+35	2	25		
+40	1	20		
Concrete temperature [C°]	Processing time [min.]	Minimum curing time ¹⁾ [min		
-20	120	2880		
-15	90	1500		
-10	60	900		
-5	40	315		
0	25	100		
+5	15	70		
+10	10	50		
+15	7	35		
+20	5	30		
DGE 22 Sinto	-ST-VES (version for summe	r season)		
Concrete temperature [C°]	Processing time [min.]	Minimum curing time ¹⁾ [min.]		
+20	14	60		
	14 11	60 50		
+20				

The minimum time from the end of the mixing to the time when the anchor may be torque or loaded (whichever is longer). Cartridge temperature from +5°C to +30°C. Minimum cartridge temperature of +15°C for application where the concrete temperature is below 0°C.

6

4

For wet condition and flooded holes the curing time must be double.

+35

+40

DGE 02 Sinto-ST-VE, DGE 12 Sinto-ST-VEW and DGE 22 Sinto-ST-VES

Intended use

Maximum processing time and minimum curing time

Annex B4

30

20

Manual Blower pump of cleaning operation: minimum nominal dimensions

To extend the length of the blowing nozzle is it possible to use the mixer extension with the manual blowing pump (position to insert the mixer extension is reported as 1).

Is it possible to blow the drilled hole using compressed oil-free air, also with the mixer extension (position to insert the mixer extension is reported as 1)). The minimum pressure is 6 bar, the minimum flow of air is 6 m^3 /h. A gun with a blowing orifice of 3,5 mm is required.

Mixer extension (from 380 mm to 1000 mm) with nominal diameter 8 or 10 mm

DGE 02 Sinto-ST-VE,
DGE 12 Sinto-ST-VEW and DGE 22 Sinto-ST-VES

Intended use Cleaning tools (1) Annex B5

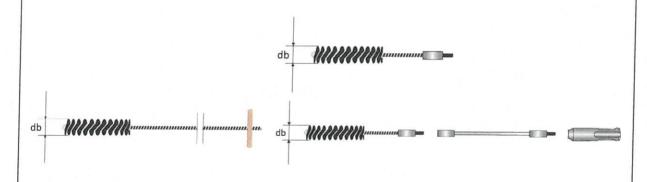
Table B4: Standard brush diameter for threaded rods

1	Threaded rod diameter		M10	M12	M16	M20	M24	M27	M30
d ₀	Nominal drill hole [mm]	10	12	14	18	24	28	30	35
dь	Brush diameter [mm]	12	14	16	20	26	30	35	37

Table B5: Standard brush diameter for rebar

Rebar diameter		Rebar diameter Ø8		Ø	10	Ø	Ø14	
d ₀	Nominal drill hole [mm]	10 ¹⁾	12 ¹⁾	12 ¹⁾	14 ¹⁾	14 ¹⁾	16 ¹⁾	18
d _b	Brush diameter [mm]	12	14	14	16	16	18	20

¹⁾ Each of two given values can be used


Table B6: Special brush diameter (mechanical brush) for threaded rods

T	hreaded rod diameter	M16	M20	M24	M27	M30
d₀	Nominal drill hole [mm]	18	24	28	30	35
d _b	Brush diameter [mm]	20	26	30	32	37

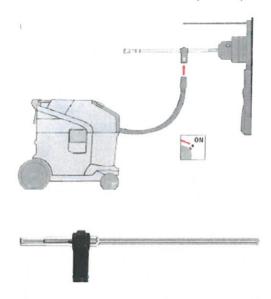
Table B7: Special brush diameter (mechanical brush) for rebar

Т	hreaded rod diameter	Q	18	Ø	10	Ø	12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
d ₀	Nominal drill hole [mm]	10 ¹⁾	12 ¹⁾	12 ¹⁾	14 ¹⁾	14 ¹⁾	16 ¹⁾	18	20	25	30	35	40
d _b	Brush diameter [mm]	12	14	14	16	16	18	20	22	27	32	37	42

¹⁾ Each of two given values can be used

Standard brush with steel bristle, steel stem and wood handle

Special (mechanical) brush with steel bristle, steel stem, threaded connection for extension or for connection to SDS adaptor


DGE 02 Sinto-ST-VE,
DGE 12 Sinto-ST-VEW and DGE 22 Sinto-ST-VES

Intended use Cleaning tools (2) Annex B6

Hollow Drill Bit (HDB)

The hollow drill bit cleaning is applicable to hammer drilling method; this system is intended to remove dust during the drilling operation if used according to the manufacturer specifications.

The drilling sistem consist of a special hollow drill bit and a vacuum cleaner. A sutibale dust extraction system must be used (e.g. Bosh GAS 35 M AFC or similar sistem with comparable performance data).

It is mandatory to switch on the vacuum cleaner before starting the drilling operations

Table B8: HDB perforation diameter for threaded rods

Th	readed rod diameter	M8	M10	M12	M16	M20	M24	M27	M30
d ₀	Nominal drill hole [mm]	10	12	14	18	24	28	30	35

Table B9: HDB perforation diameter for rebar

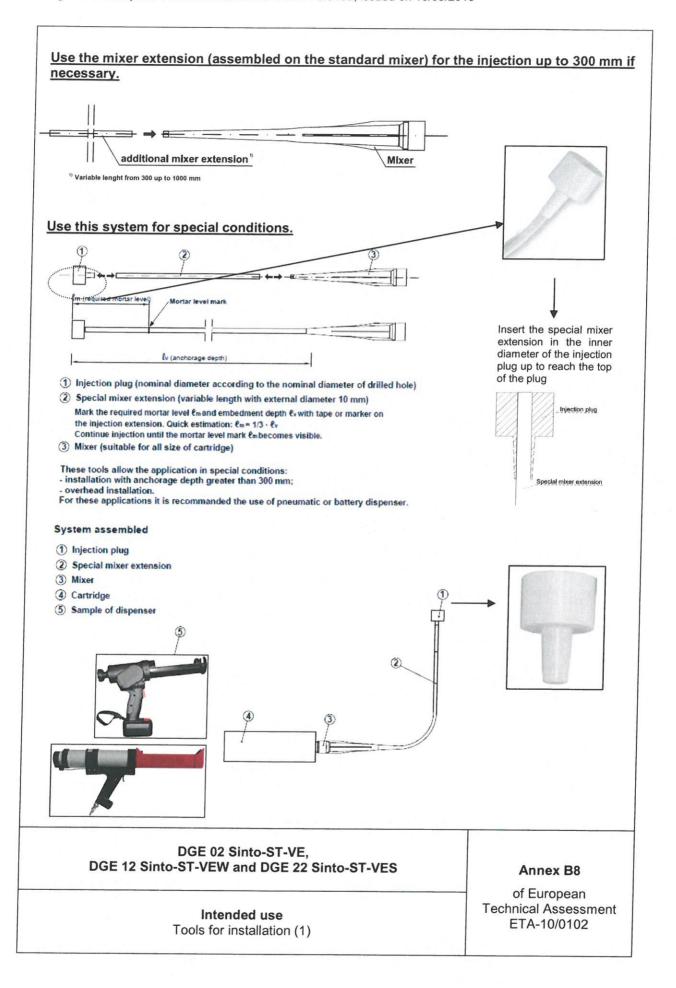
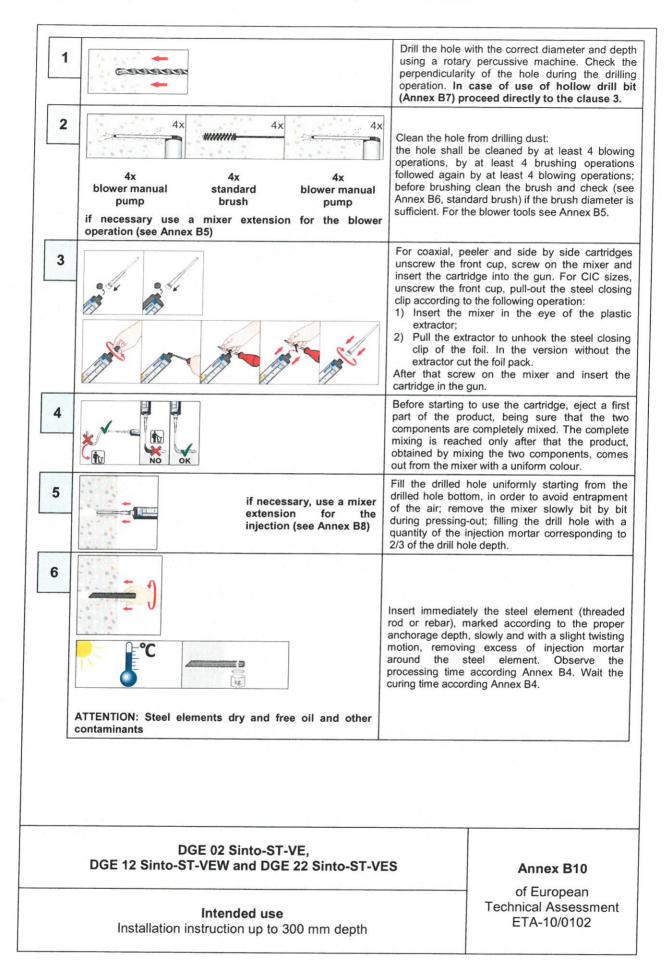
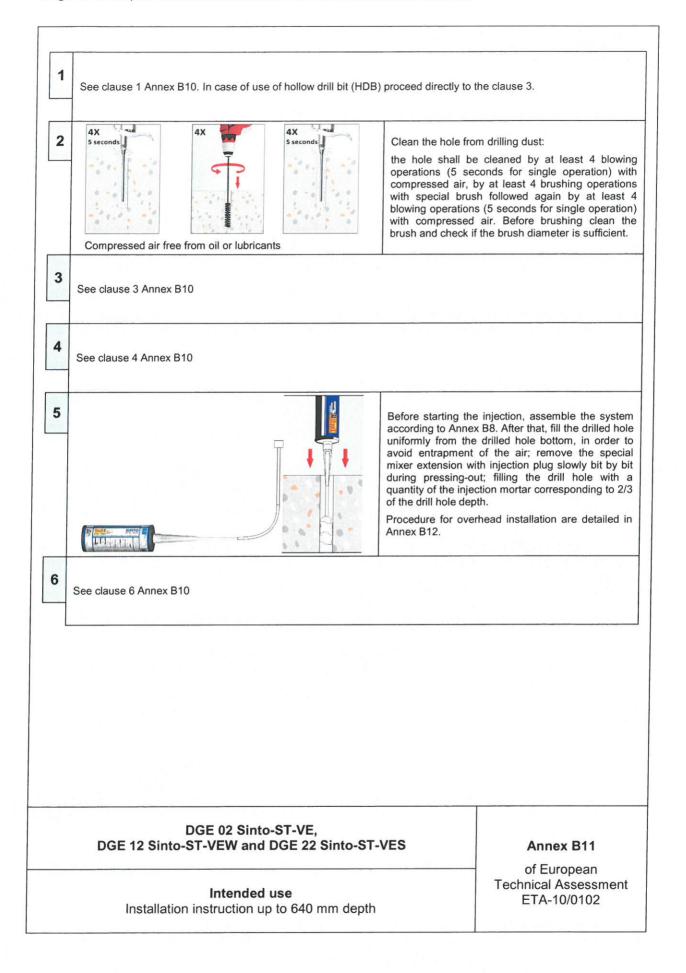
	Rebar diameter	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28
d ₀	Nominal drill hole [mm]	10 ¹⁾ 12 ¹⁾	12 ¹⁾ 14 ¹⁾	14 ¹⁾ 16 ¹⁾	18	20	25	30	35

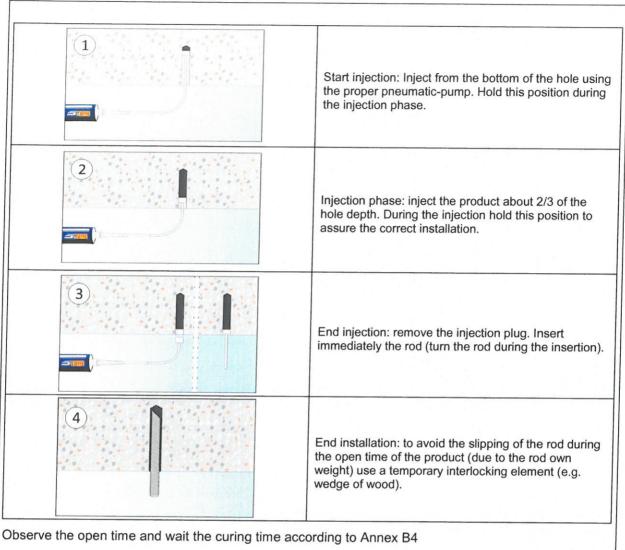
¹⁾ Each of two given values can be used

DGE 02 Sinto-ST-VE,
DGE 12 Sinto-ST-VEW and DGE 22 Sinto-ST-VES

Intended use
Hollow drill bit (HDB) specification

Annex B7


Table B10: Mortar injection pumps

Pumps (injection dispensers)	Cartridges	Types
Manual	420 ml 400 ml 380 ml	Manual (up to 300 mm anchorage depth)
Manual	345 ml 300 ml 280 ml 165 ml	Manual (up to 300 mm anchorage depth)
Manual	300 ml 280 ml 165 ml	Manual (up to 300 mm anchorage depth)
Pneumatic	825 ml	Pneumatic (up to 640 mm anchorage depth)
Pneumatic	420 ml 400 ml 380 ml	Pneumatic (up to 640 mm anchorage depth)
Battery	420 ml 400 ml 380 ml 345 ml 300 ml	Battery (up to 640 mm anchorage depth)

DGE 02 Sinto-ST-VE,	
DGE 12 Sinto-ST-VEW and DGE 22 Sinto-ST-VES	Annex B9
Intended use Tools for installation (2)	of European Technical Assessment ETA-10/0102

> Intended use Overhead installation instruction

Annex B12

Table C1: Characteristic values for steel tension resistance and steel shear resistance - threaded rods.

Size			M8	M10	M12	M16	M20	M24	M27	M30				
Steel failure - characteristic tension	resistan	се	1											
Steel class 4.8	N _{Rk,s}	[kN]	15	23	34	63	98	141	183	224				
Steel class 5.8	N _{Rk.s}	[kN]	18	29	42	78	122	176	229	280				
Steel class 8.8	N _{Rk.s}	[kN]	29	46	67	126	196	282	367	449				
Steel class 10.9	N _{Rk.s}	[kN]	37	58	84	157	245	353	459	561				
Stainless steel A2, A4, HCR class 50	N _{Rk,s}	[kN]	18	29	42	78	122	176	229	280				
Stainless steel A2, A4, HCR class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	321	392				
Stainless steel A4, HCR class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	367	449				
Steel failure - characteristic tension		ce - part	ial facto	r						THEFT				
Steel class 4.8	YMs,N	[-]				1,	50							
Steel class 5.8	YMs,N 1)	[-]				1,	50							
Steel class 8.8	γMs,N 1)	[-]				1,	50							
Steel class 10.9	YMs,N 1)	[-]				1.4								
Stainless steel A2, A4, HCR class 50	YMs,N 1)	[-]				2,8								
Stainless steel A2, A4, HCR class 70	γMs,N 1)	[-]				1,8				1.1				
Stainless steel A4, HCR class 80	γMs,N 1)	[-]	-			1.0								
Steel failure – characteristic shear re			lever ar	m										
Steel class 4.8	V ⁰ _{Rk,s}	[kN]	7	12	17	31	49	71	92	112				
Steel class 5.8	V Rk,s	[kN]	9	14	21	39	61	88	115	140				
Steel class 8.8	V Rk,s	[kN]	15	23	34	63	98	141	184	224				
Steel class 10.9	V ⁰ _{Rk,s}	[kN]	18	29	42	78	122	176	230	280				
Stainless steel A2, A4, HCR class 50	V ⁰ Rk,s	[kN]	9	14	21	39	61	88	115	140				
Stainless steel A2, A4, HCR class 70	V ⁰ _{Rk,s}	[kN]	13	20	29	55	86	124	160	196				
Stainless steel A4, HCR class 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	184	224				
Steel failure - characteristic shear re	sistance				FREEDRICK			IV.EXE	NAME OF TAXABLE PARTY.	NAME OF THE OWNER, OWNE				
Steel class 4.8	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900				
Steel class 5.8	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	561	832	1125				
Steel class 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	898	1331	1799				
Steel class 10.9	M ⁰ _{Rk,s}	[Nm]	37	75	131	333	649	1123	1664	2249				
Stainless steel A2, A4, HCR class 50	M ⁰ _{Rk,s}	[Nm]	19	37	66	166	324	561	832	1124				
Stainless steel A2, A4, HCR class 70	M ⁰ _{Rk,s}	[Nm]	26	52	92	233	454	786	1165	1574				
Stainless steel A4, HCR class 80	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	898	1331	1799				
Steel failure - characteristic shear re	sistance	- partial	factor		(44 L		P2		-110	100				
Steel class 4.8	γ _{Ms,V} 1)	[-]				1,2	5							
Steel class 5.8	γ _{Ms,V} 1)	[-]								1 - 1				
Steel class 8.8	γMs,V 1)	[-]												
Steel class 10.9	YMs,V	[-]				1,5								
Stainless steel A2, A4, HCR class 50	YMs.V	[-]				2,3		17-7						
Stainless steel A2, A4, HCR class 70	γMs,V 1)	[-]				1,5								
Stainless steel A4, HCR class 80	γMs,V 1)	[-]				1.3								

Fracture elongation threaded rod for seismic category C1 and C2 must be $A_5 \ge 19\%$. Steel classes 10.9 are not covered for seismic application.

DGE 02 Sinto-ST-VE, DGE 12 Sinto-ST-VEW and DGE 22 Sinto-ST-VES

Performances

Characteristic values for steel tension resistance and steel shear resistance - threaded rods

Annex C1

¹⁾ In the absence of national regulation

Table C2: Characteristic values tension resistance load in non-cracked concrete for threaded rod under static and quasi-static loads.

Size			M8	M10	M12	M16	M20	M24	M27	МЗ		
Steel failure												
Characteristic resistance	N _{Rk,s}	[kN]			See	Annex C1	– Table (C1				
$ \begin{array}{ c c c c c } \hline Characteristic resistance & N_{Rk,s} & [kN] & See Annex C1 - Table C1 \\ \hline Partial factor & \gamma_{Ms,N}^{-1} & [\cdot] & See Annex C1 - Table C1 \\ \hline \hline {Combined pull-out and concrete cone failure in non-cracked concrete C20/25} \\ \hline Characteristic bond resistance temperature range -40°C / +40°C & $\tau_{Rk,ucr}$ & [N/mm^2] & 16,0 & 12,0 & 12,0 & 9,5 & 9,5 \\ \hline {Characteristic bond resistance temperature range -40°C / +80°C & $\tau_{Rk,ucr}$ & [N/mm^2] & 11,0 & 8,5 & 8,5 & 8,5 & 7,0 & 7,0 \\ \hline {Characteristic bond resistance temperature range -40°C / +120°C & $\tau_{Rk,ucr}$ & [N/mm^2] & 6,0 & 4,5 & 4,5 & 4,5 & 4,0 & 4,0 \\ \hline {Increasing factor for C30/37} & & & & & & & & & \\ \hline {Increasing factor for C40/50} & & & & & & & & & & \\ \hline {Increasing factor for C50/60} & & & & & & & & & \\ \hline {Concrete cone failure} & & & & & & & & & \\ \hline {Factor for non-cracked concrete} & & & & & & & & \\ \hline {Edge distance} & & & & & & & & \\ \hline {Spacing} & & & & & & & & & \\ \hline {Spacing} & & & & & & & & \\ \hline {Spacing} & & & & & & & & \\ \hline {Spacing} & & & & & & & \\ \hline {Spacing} & & & & & & & \\ \hline {Spacing} & & & & & & \\ \hline {If h = h_{min}} & & & & \\ \hline {2,5 \cdot h_{ef}} & & & & & \\ \hline {2,0 \cdot h_{ef}} & & & & & \\ \hline {1,15 \cdot h_{ef}} & & & \\ \hline {Spacing} & & & & & \\ \hline {Spacing} & & & & & \\ \hline {If h = h_{min}} & & & \\ \hline {2,5 \cdot h_{ef}} & & & & \\ \hline {2,0 \cdot h_{ef}} & & & & \\ \hline {1,15 \cdot h_{ef}} & & & \\ \hline$												
Combined pull-out and concrete c	one failure i	n non-crac	ked cond	rete C20	/25	LTG N'S			A. Kowa			
	τ _{Rk,ucr}	[N/mm ²]	16,0	12,0	12,0	12,0	9,5	9,5	8,0	8,0		
temperature range -40°C / +80°C	T _{Rk,ucr}	[N/mm ²]	11,0	8,5	8,5	8,5	7,0	7,0	6,0	6,0		
temperature range -40°C / +120°C	T _{Rk,ucr}	[N/mm ²]	6,0	4,5	4,5	4,5	4,0	4,0	3,0	3,0		
						1,12	?					
	Ψc	[-]				1,23	3					
						1,30						
		EMPLOYER										
			11,0									
	C _{cr,N}		1,5 · h _{ef}									
	S _{cr,N}	[mm]				3,0 · h	lef					
Splitting failure												
	1	-	700				min					
			2,5	· h _{ef}	2,0 ·	h _{ef}		1,5 ·	h _{ef}			
					If	h _{min} < h <	2 · h _{min}					
Edge distance	C _{cr,Nsp}	[mm]			h _m	c _{cr,Np}	values					
									-	-		
Spacing	S _{cr,Nsp}	[mm]										
nstallation factor for combined pull	-out, concre	te cone an	d splittin	a failure		- 01,0		2000-2140		Page 19		
nstallation factors for category I11)												
	Yinst	[-]	If $h_{min} < h < 2 \cdot h_{min}$ $\begin{array}{c} 2 \times h_{min} \\ h_{min} & c_{cx,Np} & c_{cy,Nsp} \\ \text{interpolate values} \\ \text{if } h \geq 2 \cdot h_{min} \\ \hline & C_{cr,Np} \\ 2 \cdot C_{cr,sp} \\ \end{array}$									

¹⁾ In the absence of national regulation

DGE 02 Sinto-ST-VE, DGE 12 Sinto-ST-VEW and DGE 22 Sinto-ST-VES

Performances

Characteristic values tension resistance load in non-cracked concrete for threaded rod under static and quasi-static loads

Annex C2

Table C3: Characteristic values tension resistance load in cracked concrete for threaded rod under static and quasi-static loads.

Size			M10	M12	M16	M20	
Steel failure							
Characteristic resistance	$N_{Rk,s}$	[kN]		See Annex C	C1 – Table C1		
Partial factor	γMs,N 1)	[-]		See Annex C	C1 – Table C1		
Combined pull-out and concrete cone	failure in cracked	concrete C20/	25		house so Mi		
Characteristic bond resistance temperature range -40°C / +40°C	τ _{Rk,cr}	[N/mm ²]	9,0	9,0	9,0	6,5	
Characteristic bond resistance temperature range -40°C / +80°C	$ au_{Rk,cr}$	[N/mm ²]	6,5	6,5	6,5	4,5	
Characteristic bond resistance temperature range -40°C / +120°C	τ _{Rk,cr}	[N/mm ²]	3,5	3,5	3,5	2,5	
Increasing factor for C30/37 Increasing factor for C40/50	Ψc	[-]			12 23		
Increasing factor for C50/60	Ψ¢	1.1		1,:			
Concrete cone failure		Haragaran A					
Factor for cracked concrete	k _{cr,N}	[-]		7,	7		
Edge distance	C _{cr,N}	[mm]	1,5 · h _{ef}				
Spacing	S _{cr,N}	[mm]	217	3,0			
Splitting failure							
				If h =	: h _{min}		
			2,5 · h _{ef}	2,0 ·	h _{ef}	1,5 · h _€	
				If h _{min} < h	< 2 · h _{min}		
Edge distance	$C_{cr,Nsp}$	[mm]		$2 \times h_{min}$ h_{min} $interpolate$ $if h \ge 2$ C_{cr}	· h _{min}		
Pagaina		[mm]					
Spacing	S _{cr,Nsp}	[mm]	l	2 · C	cr,sp		
nstallation factor for combined pull-ou	i, concrete cone a	ing splitting fal	iure	4.0			
nstallation factors for category I111)	Yinst	[-]		1,0			
nstallation factors for category I21)	1			1,2	2		

¹⁾ In the absence of other national regulation

Performances

Characteristic values tension resistance load in cracked concrete for threaded rod under static and quasi-static loads

Annex C3

Table C4: Characteristic values shear resistance load – non-cracked and cracked concrete for threaded rod under static and quasi-static loads.

Size			M8	M10	M12	M16	M20	M24	M27	МЗ
Steel failure without lever arm										
Characteristic resistance	V ⁰ _{Rk,s}	[kN]			See	Annex C	1 – Table	C1		
Partial factor	γ _{Ms,V} 1)	[-]	See Annex C1 - Table C1							
Ductility factor	k ₇	[-]	1,0							
Steel failure with lever arm									Out The	13.5
Characteristic resistance	M ⁰ _{Rk,s}	[kN]			See	Annex C	1 – Table	C1		
Partial factor	γ _{Ms,V} 1)	[-]			See	Annex C	1 – Table	C1		-
Concrete pry out failure					1/				THE PARTY	
Factor	k ₈	[-]				2,	0			
Installation factor	γinst	[-]				1,	0			
Concrete edge failure							TENER		TARREST	
Effective length of anchor under shear loading	l _f	[-]		lf	= h _{ef} and	≤ 12 d _{nom}			$I_f = h_{ef} \le m$ (8 d _n 300 n	ax om;,
Installation factor	γinst	[-]				1,0)			

¹⁾ In the absence of other national regulation

Performances

Characteristic values shear resistance load – non- cracked and cracked concrete for threaded rod under static and quasi-static loads.

Annex C4

Table C5: Characteristic values tension resistance load in non-cracked concrete for rebar under static and quasi-static loads.

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø:
Steel failure											
Characteristic resistance	N _{Rk,s}	[kN]		×1		A	s x f _{uk} 2)				
Cross section area	As	[mm ²]	50	79	113	154	201	314	491	616	8
Partial factor	γ _{Ms,N} 1)	[-]					1,4				
Combined pull-out and concrete cone	failure in non d	racked co	ncrete C	20/25		SITE I					Tiple:
Characteristic bond resistance temperature range -40°C / +40°C	T _{Rk,ucr}	[N/mm ²]	14,0	13,0	13,0	12,0	10,0	9,5	9,5	8,5	7
Characteristic bond resistance temperature range -40°C / +80°C	τ _{Rk,ucr}	[N/mm ²]	10,0	9,5	9,0	9,0	7,5	7,0	7,0	6,0	5
Characteristic bond resistance temperature range -40°C / +120°C	T _{Rk,ucr}	[N/mm²]	5,5	5,0	5,0	5,0	4,0	4,0	4,0	3,5	3
Increasing factor for C30/37							1,12				
Increasing factor for C40/50	Ψς	[-]					1,23				
Increasing factor for C50/60							1,30				
Concrete cone failure											
Factor for non-cracked concrete	k _{ucr,N}	[-]					11,0				
Edge distance Spacing	C _{cr,N}	[mm]	1,5 · h _{ef}								
Splitting failure	S _{cr,N}	[mm]				3.	,0 · h _{ef}	- Kawa		20 INC.	=/=
Opining randre				the same	6/6/12	If I	n = h _{min}			<u>Levier</u>	
		-	2,5 ·	h.	2	2,0 · h _{ef}	1 - 11min		1,5 ·	h	_
		+	2,0	Tet			h < 2 ·	L	1,5	Hef	
Edge distance	C _{cr,Nsp}	[mm]			2 x			rimin			
							ate value 2 · h _{min}				
			C _{cr,Np}								
Spacing	S _{cr,Nsp}	[mm]				2 ·	$C_{\text{cr,sp}}$				
nstallation factor for combined pull-ou	t, concrete con	e and splitt	ing failu	ire							
nstallation factors for category I11)	ν	[-]					1,0				
nstallation factors for category I21)	Yinst	1.1					1,2		Attended to the second		

¹⁾ In the absence of other national regulation

DGE 02 Sinto-ST-VE, DGE 12 Sinto-ST-VEW and DGE 22 Sinto-ST-VES

Performances

Characteristic values tension resistance load in non-cracked concrete for rebar under static and quasi-static loads.

Annex C5

 $^{^{\}rm 2)}$ f_{uk} shall be taken from the specifications of reinforcing bars

Table C6: Characteristic values shear resistance load – non-cracked concrete for rebar under static and quasi-static loads.

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Steel failure without lever arm											
Characteristic resistance	V ⁰ _{Rk,s}	[kN]				0,5	x A _s x f	2) uk			
Partial factor	γ _{Ms,V} 1)	[-]		1,5							
Cross section area	As	[mm ²]	50 79 113 154 201 314 491 616								804
Ductility factor	k ₇	[-]	1,0								
Steel failure with lever arm									Tese list	THE STATE	
Characteristic resistance	M ⁰ _{Rk,s}	[kN]		1,2 x W _{el} x f _{uk} ²⁾							
Elastic section modulus	W _{el}	[mm³]									3217
Partial factor	γ _{Ms,V} 1)	[-]					1,5				
Concrete pry out failure										ention.	
Factor	k ₈	[-]					2,0			180	
Installation factor	γinst	[-]					1,0	7			
Concrete edge failure											Sen II
Effective length of anchor under shear loading	l _f	[-]	$I_f = h_{ef}$ and $\leq 12 d_{nom}$								
Installation factor	γinst	[-]		1,0							

¹⁾ In the absence of other national regulation

DGE 02 Sinto-ST-VE, DGE 12 Sinto-ST-VEW and DGE 22 Sinto-ST-VES

Performances

Characteristic values shear resistance load – non-cracked concrete for rebar under static and quasi-static loads.

Annex C6

 $^{^{\}rm 2)}$ f_{uk} shall be taken from the specifications of reinforcing bars

Table C7. Displacement under tension loads for non-cracked concrete – threaded rods under static and quasi-static loads.

Size			M8	M10	M12	M16	M20	M24	M27	M30
Characteristic displacement	in non-cracked concre	te C20/25 t	o C50/60	under te	nsion lo	ads				
Service load 1)	F	[kN]	9,6	10,8	14,3	23,8	29,6	42,4	40,4	44,4
Disabsament	δηο	[mm]	0,30	0,30	0,35	0,35	0,35	0,40	0,40	0,45
Displacement	δ _{N∞}	[mm]	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85

Table C8: Displacement under tension loads for non-cracked concrete – threaded rods under static and quasi-static loads.

Size			M10	M12	M16	M20				
Characteristic displacement in cracked concrete C20/25 to C50/60 under tension loads										
Service load 1)	F	[kN]	9,5	14,3	21,4	23,8				
DiI	δ_{N0}	[mm]	0,50	0,50	0,70	0,60				
Displacement	$\delta_{N\infty}$	[mm]	0,85	0,85	0,85	0,85				

Table C9: Displacement under shear loads for non-cracked and cracked concrete – threaded rods under static and quasi-static loads.

Size			M8	M10	M12	M16	M20	M24	M27	M30
Characteristic displacement i	n cracked and non-cracl	ked concre	te C20/	25 to C50	0/60 unde	er shear	oads	e Répress		
Service load 1)	F	[kN]	3,7	5,8	8,4	15,7	24,5	35,3	45,5	55,6
Di-l	δνο	[mm]	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0
Displacement	$\delta_{V\infty}$	[mm]	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0

Table C10: Displacement under tension loads for non-cracked concrete – rebar under static and quasistatic loads.

Size		1,34%	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Characteristic displacement	in non-cracked conc	rete C20/2	5 to C50	/60 unde	r tensio	n loads					
Service load 1)	F	[kN]	10,1	13,6	17,2	20,1	23,9	41,2	53,3	64,1	67,3
5: 11	δηο	[mm]	0,33	0,33	0,40	0,41	0,42	0,45	0,45	0,47	0,48
Displacement	$\delta_{N\infty}$	[mm]	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85

Table C11: Displacement under shear loads for non-cracked concrete – rebar under static and quasistatic loads.

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Characteristic displacemen	t in non-cracked con	crete C20		1				220	223	220	232
Characteristic displacemen	it iii iioii-crackeu coii	Crete CZU	123 10 0	30/00 ui	idei Sile	ai ioau	3			10 July 15	1000
Service load 1)	F	[kN]	13,2	20,6	29,6	40,3	52,7	82,3	128,6	161,3	210,6
Dianlacement	δνο	[mm]	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0
Displacement	$\delta_{V^{\infty}}$	[mm]	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0

¹⁾ These values are suitable for each temperature range and categories specified in Annex B1

DGE 02 Sinto-ST-VE,
DGE 12 Sinto-ST-VEW and DGE 22 Sinto-ST-VES

Performances

Displacement under service loads

Annex C7

Table C12: Characteristic values tension resistance load for threaded rod for seismic performance category C1.

Size			M12	M16	M20
Steel failure					
Characteristic resistance	N _{Rk,s,eq,C1}	[kN]		1,0 x N _{Rk,s}	
Partial factor 1)	γ _{Ms,N} 1)	[-]	See /	Annex C1 – Ta	ble C1
Combined pull-out and concrete cone failure					
Characteristic bond resistance temperature range -40°C / +40°C	T _{Rk,C1}	[N/mm ²]	4,2	3,7	3,7
Characteristic bond resistance temperature range -40°C / +80°C	T _{Rk,C1}	[N/mm ²]	3,0	2,7	2,7
Characteristic bond resistance temperature range -40°C / +120°C	TRk,C1	[N/mm ²]	1,6	1,4	1,4
Increasing factor for C30/37 Increasing factor for C40/50 Increasing factor for C50/60	Ψο	[-]		1,0	
Installation factors for category I1 ¹⁾ Installation factors for category I2 ¹⁾	Yinst	[-]		1,0 1,2	

¹⁾ In the absence of other national regulation

Table C13: Characteristic values shear resistance load for threaded rod for seismic performance category C1.

Size			M12	M16	M20
Steel failure		ATT STATE AND			
Characteristic resistance	V _{Rk,s,eq,C1}	[kN]		0,7 x V ⁰ _{Rk,s}	
Partial factor 1)	γ _{Ms,V} 1)	[-]	See Annex C1 – Table C		ole C1

¹⁾ In the absence of other national regulation

Table C14: Reduction factor for annular gap.

Reduction factor for annular gap			
Without annular gap filling	$\alpha_{\sf gap}$	[-]	0,5
With annular gap filling	$\alpha_{\sf gap}$	[-]	1,0

DGE 02 Sinto-ST-VE,
DGE 12 Sinto-ST-VEW and DGE 22 Sinto-ST-VES

Performances

Characteristic resistance under tension and shear loads for threaded rod for seismic action category C1

Annex C8

Table C15: Characteristic values tension resistance load for threaded rod for seismic performance category C2.

Size			M12	M16
Steel failure				
Characteristic resistance	N _{Rk,s,eq,C2}	[kN]	1,0 x	N _{Rk,s}
Partial factor 1)	γ _{Ms,N} 1)	[-]	See Annex C1 – Table C1	
Combined pull-out and concrete cone failure				
Characteristic bond resistance temperature range -40°C / +40°C	T _{Rk,eq,C2}	[N/mm ²]	1,6	1,7
Characteristic bond resistance temperature range -40°C / +80°C	τ _{Rk,eq,C2}	[N/mm²]	1,2	1,2
Characteristic bond resistance temperature range -40°C / +120°C	T _{Rk,eq,C2}	[N/mm ²]	0,6	0,7
Increasing factor for C30/37 Increasing factor for C40/50 Increasing factor for C50/60	Ψε	[-]	1,	0
Installation factors for category I1 ¹⁾ Installation factors for category I2 ¹⁾	Yinst	[-]	1, 1,	

¹⁾ In the absence of other national regulation

Table C16: Characteristic values shear resistance load for threaded rod for seismic performance category C2.

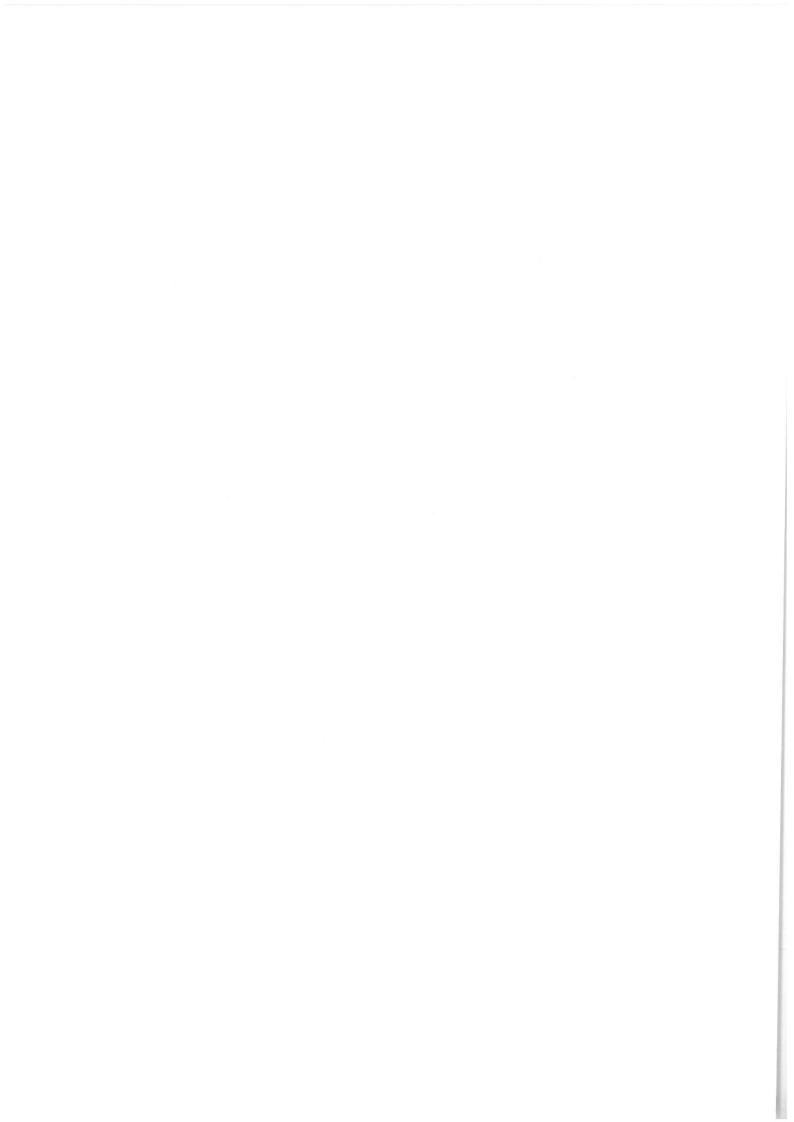
Size			M12	M16
Steel failure				
Characteristic shear resistance	V _{Rk,s,eq,C2}	[kN]	0,53 x V ⁰ _{Rk,s}	0,46 x V ⁰ _{Rk,s}
Partial factor 1)	γ _{Ms,V} 1)	[-]	See Annex C	

¹⁾ In the absence of other national regulation

Table C17: Reduction factor for annular gap.

Reduction factor for annular gap			
Without annular gap filling	α_{gap}	[-]	0,5
With annular gap filling	$\alpha_{\sf gap}$	[-]	1,0

Table C18: Displacements for tensile and shear load for seismic performance category C2 - threaded rod.


Size			M12	M16
Displacements for tensile and shear load for seismic p	performance category	C2		
Displacement in tensile at damage limitation states	δ _{N,eq,seis} (DLS)	[mm]	0,20	0,23
Displacement in tensile at ultimate limit state	δ _{N,eq,seis} (ULS)	[mm]	0,33	1,04
Displacement in shear at damage limitation states	δ _{V,eq,seis} (DLS)	[mm]	2,01	0,70
Displacement in shear at ultimate limit state	δ _{V,eq,seis} (ULS)	[mm]	4,68	2,12

DGE 02 Sinto-ST-VE, DGE 12 Sinto-ST-VEW and DGE 22 Sinto-ST-VES

Performances

Characteristic resistance under tension and shear loads for threaded rod for seismic performance category C2

Annex C9

