

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-17/0031 of 17/02/2017

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:

Tecfi Sinto-ST PES Polyester resin - DGE00

Product family to which the above construction product belongs:

Bonded anchor with anchor rod made of galvanized steel or stainless steel of sizes M8, M10 and M12, for use in masonry

Manufacturer:

Tecfi SpA
Strada Statale Appia, Km. 193
IT-81050 Pastorano (CE)
Tel. +39 0823 88 33 38
Fax +39 0823 88 32 60
Internet www.tecfi.it
Tecfi S.p.A.

Manufacturing plant:

Manufacturing Plant 2

This European Technical Assessment contains:

23 pages including 18 annexes which form an integral part of the document

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of:

Guideline for European Technical Approval (ETAG) No. 029 Injection Anchors for use in masonry, April 2013, used as European Assessment Document (EAD).

This version replaces:

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (except the confidential Annexes referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product

The Injection system Tecfi Sinto-ST PES Polyester resin - DGE00 is a bonded anchor (injection type) consisting of a mortar cartridge with Texfi injection mortar Sinto-ST PES, a perforated nylon sleeve, and an anchor rod with hexagon nut and washer in the range of M8, M10 and M12.

The steel elements are made of zinc coated steel or stainless steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry.

An illustration of the product and intended use is given in Annex A1 and Annex A3.

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation¹ of this European Technical Assessment.

The anchors are intended to be used with embedment depth given in Annex A4, Table A1. For the installed anchor see Figure given in Annex A3. The intended use specifications of the product are detailed in the Annex B1.

2 Specification of the intended use in accordance with the applicable EAD

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Works Requirements 1 and 4 of Regulation (EU) 305/2011 shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

The anchor is to be used only for anchorages subject to static or quasi-static loading in solid masonry (use

1 The technical documentation of this European Technical Assessment is deposited at ETA-Danmark and, as far as relevant for the tasks of the Notified bodies involved in the attestation of conformity procedure, is handed over to the notified bodies.

category b) or hollow or perforated masonry (use category c) according to Annex B9. The mortar strength class of the masonry has to be M 2,5 according to EN 998-2:2010 at minimum.

The anchors may be installed in Category w/d: installation in wet substrate and use in structures subjected to dry, internal conditions.

The anchors may be used in the following temperature range:

- a) -40° C to $+40^{\circ}$ C (max. short term temperature $+40^{\circ}$ C and max. long term temperature $+24^{\circ}$ C),
- b) -40° C to $+80^{\circ}$ C (max short term temperature + 80 °C and max long term temperature + 50 °C).

Elements made of galvanized steel or stainless steel may be used in structures subject to dry internal conditions only.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Characteristics of product

Mechanical resistance and stability (BWR 1):

The essential characteristics are detailed in the Annex from C1 to C5.

Safety in case of fire (BWR 2):

The essential characteristics are detailed in the Annex from C4.

Hygiene, health and the environment (BWR3):

Regarding the dangerous substances contained in this European Technical Assessment, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

Safety in use (BWR4):

For basic requirement Safety in use the same criteria are valid for Basic Requirement Mechanical resistance and stability (BWR1).

Sustainable use of natural resources (BWR7)

No performance determined

Other Basic Works Requirements are not relevant

3.2 Methods of assessment

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 has been made in accordance with the "Guideline for European technical approval of Metal Injection Anchors for Use in Masonry", ETAG 029, based on the Use Categories b and c in respect of the base material and Category w/d in respect of installation and use.

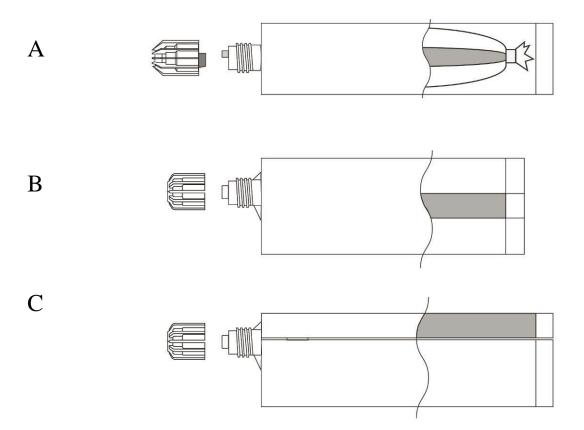
In addition to the specific clauses relating to dangerous substances contained in this European Technical Assessment, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

4 Attestation and verification of constancy of performance (AVCP)

4.1 AVCP system

According to the decision 1997/177/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1.

5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking

Issued in Copenhagen on 2017-02-17 by

Thomas Bruun Manager, ETA-Danmark

Injection Mortar: Polyester Resin System

- A) Foil Bag Cartridge 165ml, 300ml
- B) Coaxial Cartridge 380ml, 400ml, 410ml
- C) Side by Side Cartridge 345ml, 825ml

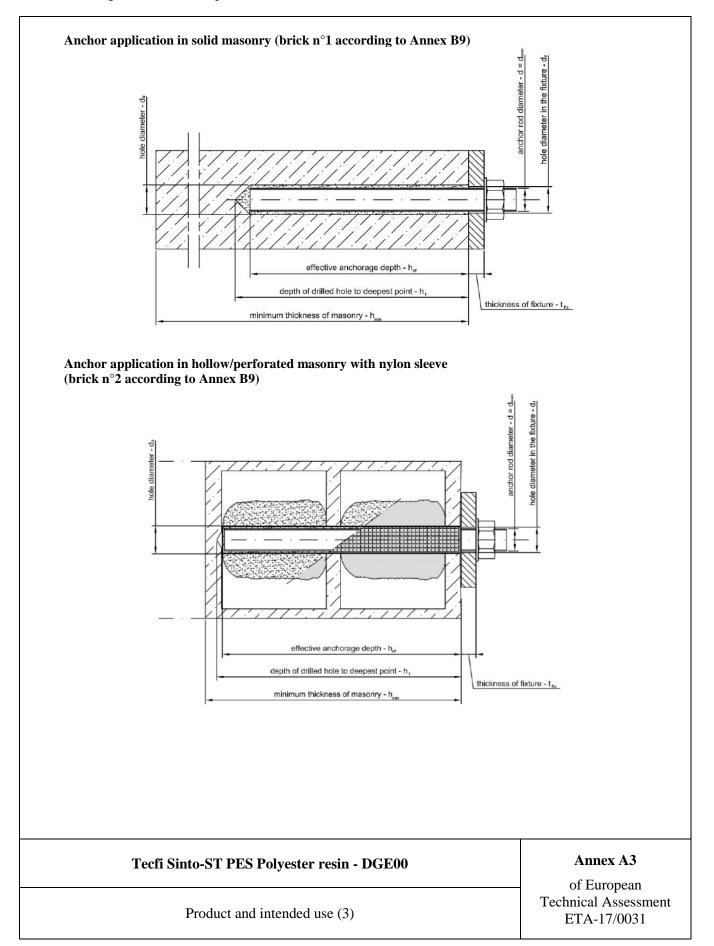
Use category in respect of the base material:

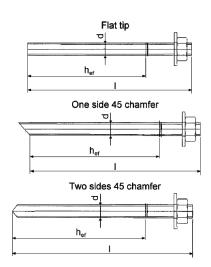
Use category b: metal injection anchors for use in solid masonry.

Use category c: metal injection anchors for use in hollow or perforated masonry.

Use category in respect of installation and use:

Category w/d: installation in wet substrate and use in structures subjected to dry, internal conditions.


Temperature range:


 -40° C to $+40^{\circ}$ C (max. short term temperature $+40^{\circ}$ C and max. long term temperature $+24^{\circ}$ C)

-40°C to +80°C (max short term temperature + 80 °C and max long term temperature + 50 °C)

Tecfi Sinto-ST PES Polyester resin - DGE00	Annex A1
Duodust and intended use (1)	of European Technical Assessment
Product and intended use (1)	ETA-17/0031

Mixer (Standard / + Hanger) Threaded Steel Stud / Washer + Nut Sizes M8, M10, M12 **Perforated Nylon Sleeve** Size 16/85 Annex A2 Tecfi Sinto-ST PES Polyester resin - DGE00 of European Technical Assessment Product and intended use (2) ETA-17/0031

Table A1: Threaded rod dimensions

Anchor size			M8	M10	M12
Diameter of anchor rod	d	[mm] =	8	10	12
Size of sleeve	$d_{nom} \ x \ l_s$	[mm] =		16 x 85	
Nominal anchorage depth	h_{ef}	[mm] =		85	
Maximum diameter hole in fixture	d_{fix}	[mm] ≤	9	12	14
Installation torque moment	T_{inst}	[Nm] =	2	2	2
Depth of drilled hole to deepest point	h_1	[mm] =		90	

¹⁾ Marking according to clause 4.3 point 3 of ETAG 029 – June 2010.

Table A2: Threaded rods materials

Designation	Material			
Threaded rods made of zinc coated steel				
	Strength class 4.6, 5.8, 6.8 EN ISO 898-1			
Threaded rod M8 – M12	Steel galvanized ≥ 5µm EN ISO 4042			
	Hot dipped galvanized ≥ 45µm EN ISO 10684			
Washer ISO 7089	Steel galvanized EN ISO 4042; hot dipped galvanized EN ISO 10684			
	Strength class 8 EN ISO 898-2			
Nut EN ISO 4032	Steel galvanized ≥ 5µm EN ISO 4042			
	Hot dipped galvanized ≥ 45µm EN ISO 10684			
Threaded rods made of st	tainless steel			
Threaded rod M8 – M12	Strength class A4-70 and A4-80 EN ISO 3506-1;			
Washer ISO 7089	Strength class A4-70 and A4-80 EN ISO 3506-1;			
Nut EN ISO 4032	Strength class A4-70 and A4-80 EN ISO 3506-1;			

Commercial standard threaded rods with:

- material and mechanical properties according to Table 2;
- confirmation of material and mechanical properties by inspection certificate 3.1 according to EN-10204:2004;
- marking of the threaded rod with the embedment depth.

Tecfi Sinto-ST PES Polyester resin - DGE00	Annex A4 of European
Threaded rod types, dimensions and materials	Technical Assessment ETA-17/0031

²⁾ Effective anchorage depths according to the range specified in table 1.

Table A3: Injection mortar

Product	Composition
Tecfi Sinto-ST PES Polyester resin - DGE00	Additive: quartz
Two components injection mortar	Bonding agent: polyester resin
	Hardener: dibenzoyl peroxide

Table A4: Minimum curing time

Concrete temperature	Processing time in dry concrete	Minimum curing time in dry concrete
≥ - 5°C	40 min	180 min
≥ +5°C	20 min	90 min
≥+15°C	9 min	60 min
≥ +25°C	5 min	30 min
≥ +35°C	3 min	20 min

1) the minimum time from the end of the mixing to the time when the anchor may be torque or loaded (whichever is longer).

Tecfi Sinto-ST PES Polyester resin - DGE00	Annex A5
Materials and curing time	of European Technical Assessment ETA-17/0031

	Plastic sleeve for hollow	/perforated masonry	: nominal dimensions	s and material
--	---------------------------	---------------------	----------------------	----------------

Resin sleeves are the effective way to create a fixing where there is a hollow void, such as for perforated bricks and blocks, or a more porous material for example blockwork. Resin is injected to fill the volume of the sleeve, and then forced through the fine perforations once the metal fixing rod is inserted. This distributes the resin material into the fixing cavity, forming a solid joint between the resin, the sleeve and the fixing.

Nylon Perforated Sleeve – 16 x 85

Nominal Diameter 16 mm

Nominal Length 85 mm

Tecfi Sinto-ST PES Polyester resin - DGE00

Plastic sleeve

Annex A6 of European Technical Assessment ETA-17/0031

Use:

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 of Regulation 305/2011 (EU) shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

Anchors subject to:

- Static and quasi-static loads: sizes from M8 to M12.

Base materials:

- Solid masonry (use category b) or hollow or perforated masonry (use category c) according to Annex B9. The mortar strength class of the masonry has to be M 2,5 according to EN 998-2:2010 at minimum.

Temperature range:

The anchors may be used in the following temperature range:

- a) -40° C to $+40^{\circ}$ C (max. short term temperature $+40^{\circ}$ C and max. long term temperature $+24^{\circ}$ C),
- b) -40° C to $+80^{\circ}$ C (max short term temperature $+80^{\circ}$ C and max long term temperature $+50^{\circ}$ C).

Use conditions (Environmental conditions):

Threaded rods:

- a) Carbon galvanized steel class 4.6, 5.8 or 6.8 according to EN ISO 898-1 for dry internal conditions.
- b) Stainless steel A4-70 and A4-80 according to EN ISO 3506 for dry internal conditions.

Nuts and washers:

Corresponding to anchor rod material above mentioned for the different environmental exposures.

Installation:

- Category w/d: installation in wet substrate and use in structures subjected to dry, internal conditions.
- Perforation with drilling machine

Proposed design methods:

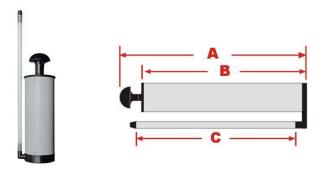
- ETAG 029, Annex C, Design method A

Tecfi Sinto-ST PES Polyester resin - DGE00	Annex B1
Intended use - Specification	of European Technical Assessment ETA-17/0031

Table B1 Installation data for solid masonry (brick n°1)*

Size		M8 M10 M12		
Nominal drilling diameter	d ₀ [mm]	10	12	14
Maximum diameter hole in the fixture	d _{fix} [mm]	9	12	14
Embedment depth	h _{ef} [mm]	85	85	85
Depth of the drilling hole	h ₁ [mm]	$h_{ef} + 5 \text{ mm}$		
Torque moment	T _{inst} [Nm]	2	2	2
Thickness to be	t _{fix,min} [mm]		> 0	
fixed	t _{fix,max} [mm]		< 1500	
Minimum spacing	S _{min} [mm]	255	255	255
Minimum edge distance	C _{min} [mm]	127,5	127,5	127,5

^{*} Type of bricks are detailed in the Annex B9

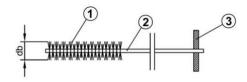

Table B2: Installation data for hollow/perforated masonry (brick n° 2)*

Size		M8	M10	M12
Plastic sleeve		16x85		
Nominal drilling diameter	d ₀ [mm]	16	16	16
Maximum diameter hole in the fixture	d _{fix} [mm]	9	12	14
Embedment depth	h _{ef} [mm]	85	85	85
Depth of the drilling hole	h ₁ [mm]	h _{ef} + 5 mm		
Torque moment	T _{inst} [Nm]	2	2	2
Thickness to be	t _{fix,min} [mm]	>0		
fixed	t _{fix,max} [mm]	< 1500		
Minimum spacing	$S_{min,\parallel}$ [mm]	560	560	560
	$S_{min,\perp}[mm]$	200	200	200
Minimum edge distance	C _{min} [mm]	100	100	100

^{*} Type of bricks are detailed in the Annex B9

Tecfi Sinto-ST PES Polyester resin - DGE00	Annex B2
Intended use - data	of European Technical Assessment ETA-17/0031

Manual blower pump: nominal dimensions

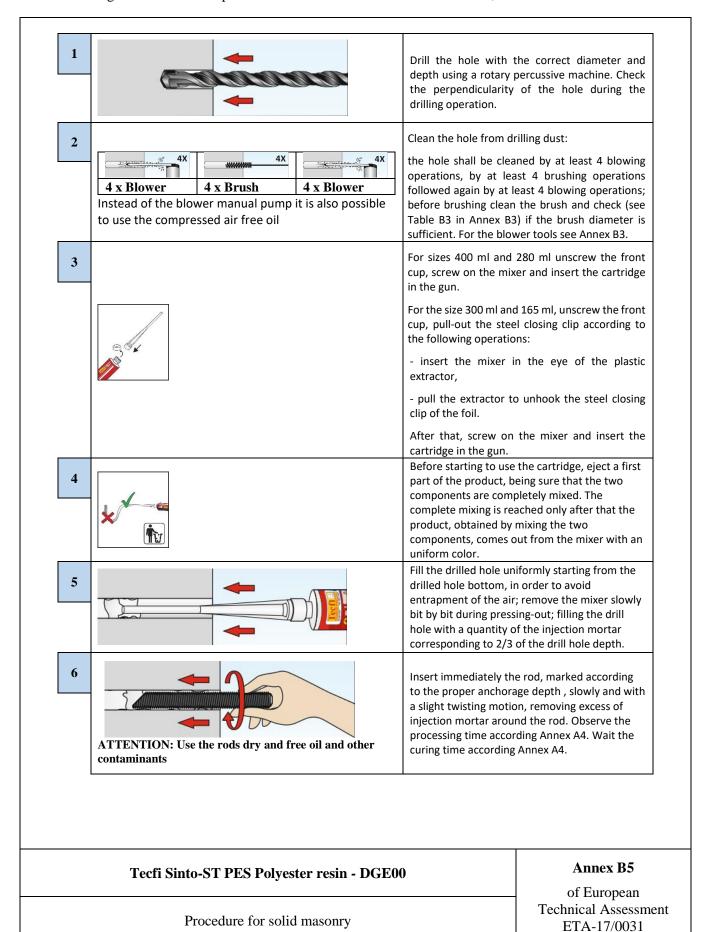

 190mm (240x190x300mm)
 280mm (330x280x300mm)
 400mm (420x370x350mm)

 -(A): 240mm (overall)
 -(A): 330mm (overall)
 -(A): 420mm (overall)

 -(B): 190mm (Body)
 -(B): 280mm (Body)
 -(B): 370mm (Body)

-(C) : 300mm (Tube) -(C) : 350mm (Tube)

Steel Wire Brushes


Table B3: Brush diameter

Size		M 8	M10	M12
Nominal drill hole diameter – solid masonry (use category b)	$\mathbf{d}_0\left[\mathbf{mm}\right]$	10	12	14
Brush size - solid masonry (use category b)	d _b [mm]	10	13	13
Nominal drill hole diameter – hollow masonry (use category c)	$\mathbf{d}_0\left[\mathbf{mm}\right]$	18	18	18
Brush size - hollow masonry (use category c)	db [mm]	16	16	16

Tecfi Sinto-ST PES Polyester resin - DGE00	Annex B3
Cleaning tools	of European Technical Assessment ETA-17/0031

Picture	Size Cartridge	Operating principle
DH 01 00 400	400 ml	Manual
	300 ml	
1	280 ml	Manual
DH 01 00 345	165 ml	
	300 ml	
	280 ml	Manual
DH 01 00 300	165 ml	

Tecfi Sinto-ST PES Polyester resin - DGE00	E00 Annex B4 of European	
Tools for injection	Technical Assessment ETA-17/0031	

	Drill the hole with the correct diameter and depth using a rotary machine. Check the perpendicularity of the hole during the drilling operation.
2	Clean the hole from drilling dust:
	the hole shall be cleaned by at least 4 blowing operations, by at least 4 brushing operations followed again by at least 4 blowing operations; before brushing clean the brush and check (see Table B3 in Annex B3) if the brush diameter is sufficient. For the blower tools see Annex B3.
3	For sizes 400 ml and 280 ml unscrew the front cup, screw on the mixer and insert the cartridge in the gun.
	For the size 300 ml and 165 ml, unscrew the front cup, pull-out the steel closing clip according to the following operations:
	- insert the mixer in the eye of the plastic extractor,
	- pull the extractor to unhook the steel closing clip of the foil.
	After that, screw on the mixer and insert the cartridge in the gun.
4	Before starting to use the cartridge, eject a first part of the product, being sure that the two components are completely mixed. The complete mixing is reached only after that the product, obtained by mixing the two components, comes out from the mixer with an uniform color.
5	Remove the centering cap from the plastic sleeve. Insert in the hole the plastic sleeve (see Annex A6). Fill the sleeve uniformly starting from the sleeve bottom. Remove the mixer slowly bit by bit during pressing out: remove the mixer about 10 mm for each pressing operation. Filling the sleeve completely.
ATTENTION: Use the rods dry and free oil and other contaminants	Insert immediately the rod, marked according to the proper anchorage depth , slowly and with a slight twisting motion, removing excess of injection mortar around the rod. Observe the processing time according Annex A4. Wait the curing time according Annex A4.

Tecfi Sinto-ST PES Polyester resin - DGE00

Procedure for hollow/perforated masonry

Annex B6

of European Technical Assessment ETA-17/0031

Table B5: Type of solid (Brick No 1) and hollow/perforated masonry (Brick No 2)

Solid Brick

Dimensions [mm]: 120 x 250 x 60

 f_b class $\ge 40 \text{ N/mm}^2$

density $\rho_m \ge 1666,7 \text{ kg/m}^3$

(e.g. type "Mattone Pieno")

Hollow/Perforated

Dimensions [mm]: 200 x 560 x 274

 f_b class \geq 8,5 N/mm²

density $\rho_m \ge 600 \text{ kg/m}^3$

(e.g. type "French brick")

Tecfi Sinto-ST PES Polyester resin - DGE00

Type and dimensions of brick

Annex B7

of European Technical Assessment ETA-17/0031

Table C1: Essential Characteristics

ESSENTIAL CHARAC	CTERISTICS	PERFORMANCE			
Installation parameters	<u> </u>	M8	M10	M12	
d [mm]		8	10	12	
do [mm] category b (soli	d masonry)	10	12	14	
	ow or perforated masonry)	16	16	16	
Type of plastic sleeve for	r use in category c	16x85	16x85	16x85	
d _{fix} [mm]		9	12	14	
h ₁ [mm]			$h_{ef} + 5 \text{ mm}$		
t _{fix} [mm]	Min		> 0		
	Max		≤ 1500 mm	T	
T _{inst} [Nm] category b (so		2	2	2	
T _{inst} [Nm] category c (ho	ollow or perforated	2	2	2	
masonry)					
S _{min} [mm] category b (so		255	255	255	
C _{min} [mm] category b (so	• /	127,5	127,5	127,5	
$S_{min} \ [mm] \ category \ c \ (hollow \ masonry) \ S_{min, \parallel}$		560	560	560	
$S_{min}\left[mm\right]$ category c (ho	ollow) S _{min,} ⊥	200	200	200	
C _{min} [mm] category c (ho	ollow masonry)	100	100	100	
* Resistance for tensile Temperature range -40	and shear load $0^{\circ}\text{C}/+40^{\circ}\text{C} (T_{mlp}=24^{\circ}\text{C})$	M8	M10	M12	
Brick n°1 (solid)	N _{Rk} [kN]	2,5			
Dick ii 1 (solid)	V _{Rk} [kN]	6,0			
Brick n°2 (hollow)	N _{Rk} [kN]	0,75			
	V _{Rk} [kN]		3,5		
* Resistance for tensile					
Temperature range -40 50°C)	0°C to +80°C (T _{mlp} =	M8	M10	M12	
Brick n°1 (solid) NRk [kN]		2,0			
Direk ii 1 (Striu)	V _{Rk} [kN]	6,0			
Brick n°2 (hollow)	N _{Rk} [kN]		0,6		
, ,	V _{Rk} [kN]	NI NI NI	3,5		

Tecfi Sinto-ST PES Polyester resin - DGE00	Annex C1 of European
Performance for static and quasi-static loads: Resistances	Technical Assessment ETA-17/0031

^{*} For design according to ETAG 029 Annex C: $N_{Rk} = N_{Rk,p} = N_{Rk,pb} - \text{steel failure is not decisive}$ * For design according to ETAG 029: $V_{Rk} = V_{Rk,b} - \text{steel failure without lever arm is not decisive} - V_{Rk,c}$ according to ETAG 029 Annex C section C.5.2.2.5

Table C2: Characteristic bending mo	oments
-------------------------------------	--------

Size			M8	M10	M12
Characteristic resistance with standard threaded rod grade 4.6	$M_{Rk,s}$	[Nm]	15	30	52
Partial safety factor	γ_{Ms}	[-]		1,67	
Characteristic resistance with standard threaded rod grade 5.8	$M_{Rk,s}$	[Nm]	19	37	66
Partial safety factor	γ _{Ms}	[-]		1,25	
Characteristic resistance with standard threaded rod grade 6.8	$M_{Rk,s}$	[Nm]	22	45	79
Partial safety factor	γ_{Ms}	[-]		1,25	
Characteristic resistance with standard threaded rod stainless steel A4-70 (class 70)	$M_{Rk,s}$	[Nm]	26	52	92
Partial safety factor	γ _{Ms}	[-]		1,56	
Characteristic resistance with standard threaded rod stainless steel A4-80 (class 80)	$M_{Rk,s}$	[Nm]	30	60	105
Partial safety factor	γ_{Ms}	[-]		1,33	

Performance for static and quasi-static loads: Resistances

Annex C2 of European Technical Assessment ETA-17/0031

T 11 (2)	O1 4 14 1	•	
Table (3.	Characteristic valu	ec for fencion of	nd chear load

ESSENTIAL CHARACTERISTICS			PERFORMANCE			
* Resistance for tensile and shear load Temperature range -40°C/+40°C (T_{mlp} = 24°C) and -40°C to +80°C (T_{mlp} = 50°C)		M8	M10	M12		
γ _{Mm} [-] Category w/d				2,50		
Rrick n° I	S _{cr,N} [mm]		255	255	255	
BIICK II 1	C _{cr,N} [mm]		127,5	127,5	127,5	
	$S_{cr,N,\parallel}$ [mm]		560	560	560	
Brick n°2	$S_{cr,N} \perp [mm]$		200	200	200	
	C _{cr,N} [mm]		100	100	100	
β coefficient for in situ test (Temperature range: -40°C/-		annex B)	М8	M10	M12	
Brick Nº 1 - Solid brick		β [-]		0,57	•	
Brick Nº 2 - French Brick		β[-]		0,60		
β coefficient for in situ test (Temperature range: -40°C/		annex B)	M8	M10	M12	
Brick Nº 1 - Solid brick		β [-]		0,45		
Brick N° 2 - French Brick β[-]				0,47		
Tensile load Temperature range -40°C/+ Brick n°1 – Solid brick	-40°C (T _{mlp} =	24°C)	M8	M10	M12	
	nissible service load in tensile F [kN]		1410	0,71	14112	
	δ _{N0} [1		0.02			
Displacement	δ _{N∞} [-	0,05			
Brick n°2 – Hollow/perfora			M8 With sleeve	M10 With sleeve	M12 With sleeve	
Admissible service load in ter	nsile F[k]	N]		0,21		
	δ _{N0} [1	mml	0.03			
Displacement	δ _{N∞} [0.05			
Displacement under service Tensile load Temperature range -40°C to	load		1	0,03		
Brick n°1 – Solid brick			M8	M10	M12	
Admissible service load in ter	nsile F [kl	N]		0,57	l .	
D: 1	δ _{N0} [1	mm]	0,03			
Displacement $\delta_{N\infty}$ [mm]			0,06			
Brick n°2 – Hollow/perfora			M8 With sleeve	M10 With sleeve	M12 With sleeve	
Admissible service load in ter	nsile F [kl	N]		0,17		
D:1	δ _{N0} [1	mm]	0,03			
Displacement $\delta_{N\infty}$ [mm]			0,07			

Tecfi Sinto-ST PES Polyester resin - DGE00	Annex C3
	of European
Performance for static and quasi-static loads: Resistances	Technical Assessment ETA-17/0031
•	

Table C3 cont.: Characteristic values for tension and shear load.

ESSENTIAL CHARACTERISTICS		PERFORMANCE		
Displacement under service load				
Shear load				
Temperature range -40°C/+40°C	$(T_{mlp} = 24^{\circ}C)$ as	nd -40° C to $+80^{\circ}$ C ($T_{mlp} = 5^{\circ}$	0°C)	
Brick n°1 – Solid brick		M8	M10	M12
Admissible service load in shear	F [kN]	1,71		
Displacement	δ_{V0} [mm]	0,45		
	$\delta_{V\infty}$ [mm]	0,68		
Brick n°2 – Hollow/perforated brick		M8	M10	M12
		With sleeve	With sleeve	With sleeve
Admissible service load in shear	F [kN]		1,00	
Displacement	δv ₀ [mm]		1,15	
	$\delta_{V\infty}$ [mm]		1,73	•

Table C4: Reaction to fire.

ESSENTIAL CHARACTERISTICS	PERFORMANCE
Reaction to fire	In the final application the thickness of the mortar layer is about 1 to 2 mm and most of the mortar is material classified class A1 according to EC Decision 96/603/EC. Therefore, it may be assumed that the bonding material (synthetic mortar or a mixture of synthetic mortar and cementitious mortar) in connection with the metal anchor in the end use application do not make any contribution to fire growth or to the fully developed fire and they have no influence to the smoke hazard.

Table C5: Resistance to fire.

ESSENTIAL CHARACTERISTICS	PERFORMANCE
Resistance to fire	NPD

Tecfi Sinto-ST PES Polyester resin - DGE00	Annex C4 of European
Performance for static and quasi-static loads: Resistances	Technical Assessment ETA-17/0031

Table C6: Terminology and symbols

TERM	MINOLOGY AND SYMBOLS
d	Diameter of anchor bolt or thread diameter
d_0	Drill hole diameter
d_{fix}	Diameter of clearance hole in the fixture
h _{ef}	Effective anchorage depth
h ₁	Depth of the drilling hole
T _{inst}	Torque moment to installation
t _{fix}	Thickness to be fixed
S_{min}	Minimum allowable spacing
C _{min}	Minimum allowable edge distance
N_{Rk}	Characteristic tensile resistance for single anchor
V_{Rk}	Characteristic shear resistance for single anchor
γ _{Mm}	Partial safety factors
S _{cr,N}	Spacing for ensuring the transmission of the characteristic tensile resistance of a single anchor without spacing and edge effects
C _{cr,N}	Edge distance for ensuring the transmission of the characteristic tensile resistance of a single anchor without spacing and edge effects
β	Factor according to ETAG 029 Annex B
F	Service load
δ0	Short term displacement under service load
δ_{∞}	Long term displacement under service load
NPD	No performance declared
	-

Terminology and symbols

Annex C5 of European Technical Assessment ETA-17/0031